4
Tetrahedron
To further elucidate the possible mechanism of this reaction,
an equivalent amount of 2,2,6,6-tetramethyl-1-piperidinyloxy
TEMPO, a well-known radical-capturing species) was added to
17. Kärkäs, M. D.; Porco Jr, J. A.; Stephenson, C. R. J. Chem. Rev.
016, 116, 9683-9747.
8. Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Chem. Soc. Rev.
016, 45, 6165-6212.
9. Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527-532.
2
1
1
(
2
the aerobic oxidation of 1. The reaction was inhibited completely,
which indicated that a single electron transfer (SET) pathway
might be involved in this transformation. As shown in Scheme 2,
the visible-light-driven catalytic processes probably proceeded as
20. Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011,
40, 102-113.
2
2
1. Xuan, J.; Xiao, W-J. Angew. Chem. Int. Ed. 2012, 51, 6828-6838.
2. Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T. Chem. Rev. 2016,
follows: (i) O captured the electron from the excited RFT
2
1
16, 9748-9815.
3
•−
(
RFT*) and generated superoxide radical anion (O
2
); and (ii)
•−
2
3. Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116,
after abstracting hydrogen from R=N−OH (NHS), O
2
was
and generated R=N−O . Subsequently,
R=N-O abstracted hydrogen from RH (ethylbenzene) to generate
10035-10074.
.
ultimately reduced to H
2
O
2
24. Perutz, R. N.; Procacci, B. Chem. Rev. 2016, 116, 8506-8544.
25. Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97-
113.
.
.
.
.
2
R , and the formed R was rapidly trapped by O to obtain ROO ,
2
2
6. Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355-360.
7. Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem. Int. Ed.
2014, 53, 12064-12068.
which eventually generated R=O. In the catalytic processes, the
by-product 1-phenylethanol was detected by GC-MS (S5, Fig. 2,
ESI†), the phenylethanol could be oxidized to acetophenone
28. Hu, X.; Zhang, G.; Bu, F.; Lei, A. ACS Catal. 2017, 7, 1432-1437.
9. de Gonzalo, G.; Fraaije, M. W. ChemCatChem. 2013, 5, 403-415.
30. Insińska-Rak, M.; Sikorski, M. Chem. Eur. J. 2014, 20, 15280-
5291.
3+
2
(Table 2, entry 7). Fe could have exhibited two functions: (i)
•−
accelerated the formation of O
R=N−O , and (ii) decomposed the by-product H
2
and stabilized the corresponding
to generate
1
.
2
O
2
3
1. Fukuzumi, S.; Yasui, K.; Suenobu, T.; Ohkubo, K.; Fujitsuka, M.;
.
.
OH, which could abstract hydrogen from RH to generate R and
accelerate the catalytic cycle due to H degradation of RFT
Moreover, H was detected by
UV-vis spectroscopy (S6, Fig. 3, ESI†).
Ito, O. J. Phys. Chem. A. 2001, 105, 10501-10510.
2 2
O
32. Cibulka, R.; Vasold, R.; König, B. Chem. Eur. J. 2004, 10, 6223-
231.
3. Svoboda, J.; Schmaderer, H.; König, B. Chem. Eur. J. 2008, 14,
854-1865.
53-54,59-60,65-66
6
under irradiation.
2 2
O
3
3
3
1
4. Schmaderer, H.; Hilgers, P.; Lechner, R.; König, B. Adv. Synth.
Catal. 2009, 351, 163-174.
5. Dadová, J.; Kümmel, S.; Feldmeier, C.; Cibulková, J.; Pažout, R.;
Maixner, J.; Gschwind, R. M.; König, B.; Cibulka, R. Chem. Eur.
J. 2013, 19, 1066-1075.
3. Conclusions
In summary, a cooperative aerobic photocatalytic system
among RFT, NHS, and FeCl ·6H O for C−H bond oxygenation
3
2
with visible light at room temperature was developed. Compared
with the work of Wolf, this cooperative photocatalytic system is
cheaper, and the substrate scopes are further extended. Moreover,
a plausible reaction mechanism through the SET pathway was
proposed. Further studies on both reaction scope and reaction
mechanism are currently underway.
36. Bachl, J.; Hohenleutner, A.; Dhar, B. B.; Cativiela, C.; Maitra, U.;
König, B.; Díaz, D. D. J. Mater. Chem. A. 2013, 1, 4577-4588.
3
3
7. Korvinson, K. A.; Hargenrader, G. N.; Stevanovic, J.; Xie, Y.;
Joseph, J.; Maslak, V.; Hadad, C. M.; Glusac, K. D. J. Phys. Chem.
A. 2016, 120, 7294-7300.
8. Lechner, R.; König, B. Synthsis. 2010, 10, 1712-1718.
39. Daďová, J.; Svobodová, E.; Sikorski, M.; König, B.; Cibulka, R.
ChemCatChem. 2012, 4, 620-623.
Acknowledgments
40. Neveselý, T.; Svobodová, E.; Chudoba, J.; Sikorski, M.; Cibulka,
R. Adv. Synth. Catal. 2016, 358, 1654-1663.
We are grateful to the Shanghai Alliance Program,
Grant/Award Number: LM 201666; the Capacity-building
Projects in Shanghai Local Universities, Grant/Award Number:
41. Hartman, T.; Cibulka, R. Org. Lett. 2016, 18, 3710-3713.
4
2. Mojr, V.; Svobodová, E.; Straková, K.; Neveselý, T.; Chudoba, J.;
Dvořáková, H.; Cibulka, R. Chem. Commun. 2015, 51, 12036-
1
2039.
15120503700.
4
3. Špačková, J.; Svobodová, E.; Hartman, T.; Stibor, I.; Kopecká, J.;
Cibulková, J.; Chudoba, J.; Cibulka, R. ChemCatChem. 2017, 9,
References
1
177-1181.
4. Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137,
1254-11257.
5. Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138,
040-1045.
6. Hering, T.; Mühldorf, B.; Wolf, R.; König, B. Angew. Chem. Int.
Ed. 2016, 55, 1-5.
7. März, M.; Chudoba, J.; Kohouta, M.; Cibulka, R. Org. Biomol.
Chem. 2017, 15, 1970-1975.
4
4
4
4
1
2
3
.
.
.
Christophe, C. Chem. Rev. 2010, 110, 656-680.
Labinger, J. A.; Bercaw, J. E. nature. 2002, 417, 507-514.
Newhouse, T.; Baran, P. S. Angew. Chem. Int. Ed. 2011, 50, 3363-
1
1
3
374.
4
5
.
.
Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851-863.
Tan, T. T.; Zheng, T. Y.; Yu, Y. Q.; Xu, K. RSC Adv. 2017, 7,
1
5176-15180.
6
7
.
.
Mizuno, M.; Inagaki, A.; Yamashita, M.; Soma, N.; Maeda, Y.;
Nakatani, H. Tetrahedron. 2006, 62, 4065-4070.
Luque-Ortega, J. R.; Reuther, P.; Rivas, L.; Rivas, C. J. Med.
Chem. 2010, 53, 1788-1798.
4
4
8. Mühldorf, B.; Wolf, R. ChemCatChem. 2017, 9, 920-923.
9. Lechner, R.; Kümmel, S.; König, B. Photochem. Photobiol. Sci.
2
010, 9, 1367-1377.
0. Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985,
07, 3020-3027.
5
8
9
.
.
Nakamura, A.; Nakada, M. Synthesis. 2013, 45, 1421-1451.
Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate,
M. D,; Baran, P. S. nature. 2016, 533, 77-81.
1
5
5
1. Fukuzumi, S.; Kojima, T. J Biol Inorg Chem. 2008, 13, 321-323.
2. Fukuzumi, S.; Jung, J.; Lee, Y. M.; Nam, W. Asian. J. Org. Chem.
1
0. Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749-
23.
2
017, 6, 397-409.
8
5
5
5
5
3. Mühldorf, B.; Wolf, R. Chem. Commun. 2015, 51, 8425-8428.
4. Mühldorf, B.; Wolf, R. Angew. Chem. Int. Ed. 2016, 55, 427-430.
5. Recupero, F.; Punta, V. Chem. Rev. 2007, 107, 3800-3842.
6. Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate,
M. D.; Baran, P. S. nature. 2016, 533, 77-81.
1
1
1. Gunay, A.; Theopold, K. H. Chem. Rev. 2010, 110, 1060-1081.
2. Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V. B.; Pleiss, J.;
Gläser, R.; Einicke, W.-D.; Sprenger, G. A.; Beifuß, U.; Klemm,
E.; Liebner, C.; Hieronymus, H.; Hsu, S.-F.; Plietker, B.; Laschat,
S. ChemCatChem. 2013, 5, 82-112.
5
5
5
6
7. Zhang, P.; Wang, Y.; Yao, J.; Wang, C.; Yan, C.; Antonietti, M,;
Li, H. R. Adv. Synth. Catal. 2011, 353, 1447-1451.
8. Devari, S.; Rizvi, M. A.; Shah, B. A. Tetrahedron Lett. 2016, 57,
1
3. Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am.
Chem. Soc. 2013, 135, 11481-11484.
1
1
4. Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28-29.
5. Hudlicky, M. Oxidations in Organic Chemistry, American
Chemical Society: Washington, 1990.
3
294-3297.
9. Miao, C. X.; Zhao, H. Q.; Zhao, Q. Y.; Xia, C. G.; Sun, W. Catal.
Sci. Technol. 2016, 6, 1378-1383.
0. Hruszkewycz, D. P.; Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem.
Sci. 2017, 8, 1282-1287.
1
6. Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075-
1
0166.