ACS Catalysis
Page 10 of 25
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
32) Francke, R.; Little, R. D. Redox Catalysis in Organic
Electrosynthesis: Basic Principles and Recent Developments.
Chem. Soc. Rev. 2014, 43, 2492–2521.
51) Hudson, P. K.; Schwarz, J.; Baltrusaitis, J.; Gibson, E. R.;
Grassian, V. H. A Spectroscopic Study of Atmospherically Relevant
Concentrated Aqueous Nitrate Solutions. J. Phys. Chem. A 2007, 111
, 544–548.
52) Boone, B. E.; Shannon, C. Optical Properties of Ultrathin
Electrodeposited CdS Films Probed by Resonance Raman
Spectroscopy and Photoluminescence. J. Phys. Chem. 1996, 100,
9480–9484.
53) DiMeglio, J. L.; Bartlett, B. M. The Interplay of Corrosion and
Photocatalysis During Non-Aqueous Benzylamine Oxidation on
Cadmium Sulfide. Chem. Mater. 2017, 29, 7579-7586
54) Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas,
C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.;
Restelli, G.; Sidebottom, H. The Nitrate Radical: Physics, Chemistry,
and the Atmosphere. Atmos. Environ. Part A, Gen. Top. 1991, 25, 1–
203.
55) Skov, H.; Benter, T.; Schindler, R. N.; Hjorth, J.; Restelli, G.
Epoxide Formation in the Reactions of the Nitrate Radical with 2,3-
Dimethyl-2-Butene, Cis- and Trans-2-Butene and Isoprene. Atmos.
Environ. 1994, 28, 1583–1592.
56) Chen, B.; Wang, L.; Gao, S. Recent Advances in Aerobic
Oxidation of Alcohols and Amines to Imines. ACS Catal. 2015, 5,
5851–5876.
57) Yuan, B.; Chong, R.; Zhang, B.; Li, J.; Liu, Y.; Li, C.
Photocatalytic Aerobic Oxidation of Amines to Imines on BiVO4
under Visible Light Irradiation. Chem. Commun. 2014, 50, 15593–
15596.
58) Lang, X.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Selective Formation
of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO2.
Angew. Chem. Int. Ed. 2011, 50, 3934–3937.
59) Kwon, Y.; Schouten, K. J. P.; Van Der Waal, J. C.; De Jong, E.;
Koper, M. T. M. Electrocatalytic Conversion of Furanic Compounds.
ACS Catal. 2016, 6, 6704–6717.
3
3) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies
in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074.
4) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic
3
Electrochemical Methods since 2000: On the Verge of
a
Renaissance. Chem. Rev. 2017, 117, 13230–13319.
3
5) Leonard, J. E.; Scholl, P. C.; Steckel, T. P.; Lentsch, S. E.; Van
De Mark, M. R. Electrochemical Oxidation of Alcohols: Part II
Preparative Anodic Oxidation of Secondary Alkanols Employing
Lithium Nitrate. Tetrahedron Lett. 1980, 21, 4695–4698.
36) Christopher, C.; Lawrence, S.; Anbu Kulandainathan, M.;
Kulangiappar, K.; Easu Raja, M.; Xavier, N.; Raja, S. Electrochemical
Selective Oxidation of Aromatic Alcohols with Sodium Nitrate
Mediator in Biphasic Medium at Ambient Temperature.
Tetrahedron Lett. 2012, 53, 2802–2804.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
7) Christopher, C.; Lawrence, S.; Bosco, A. J.; Xavier, N.; Raja, S.
Selective Oxidation of Benzyl Alcohol by Two Phase Electrolysis
Using Nitrate as Mediator. Catal. Sci. Technol. 2012, 2, 824–827.
3
8) Kroll, J. H.; Seinfeld, J. H. Chemistry of Secondary Organic
Aerosol: Formation and Evolution of Low-Volatility Organics in the
Atmosphere. Atmos. Environ. 2008, 42, 3593–3624.
3
9) Wennberg, P. O.; Bates, K. H.; Crounse, J. D.; Dodson, L. G.;
McVay, R. C.; Mertens, L. A.; Nguyen, T. B.; Praske, E.; Schwantes, R.
H.; Smarte, M. D.; St Clair, J. M.; Teng, A. P.; Zhang, X.; Seinfeld, J. H..
Gas-Phase Reactions of Isoprene and Its Major Oxidation Products.
Chem. Rev. 2018, 118, 3337–3390.
4
0) Rousse, D.; George, C. A Novel Long Path Photolysis Cell -
Application to the Reactivity of Selected Organic Compounds
toward the Nitrate Radical (NO ). Phys. Chem. Chem. Phys. 2004, 6,
408–3414.
1) Mezyk, S. P.; Cullen, T. D.; Rickman, K. A.; Mincher, B. J. The
Reactivity of the Nitrate Radical (•NO ) in Aqueous and Organic
Solutions. Int. J. Chem. Kinet. 2017, 49, 635–642.
2) Balcerzyk, A.; El Omar, A. K.; Schmidhammer, U.; Pernot, P.;
Mostafavi, M. Picosecond Pulse Radiolysis Study of Highly
3
3
4
3
60) Van Putten, R. J.; Van Der Waal, J. C.; De Jong, E.; Rasrendra,
C. B.; Heeres, H. J.; De Vries, J. G. Hydroxymethylfurfural, a Versatile
Platform Chemical Made from Renewable Resources. Chem. Rev.
2013, 113, 1499–1597.
61) Amarasekara, A. S. In Renewable Polymers. Synthesis,
Processing, and Technology; Mittal, V., Ed.; Scrivener Publishing
LLC: Beverly, MA, 2012; Chapter 9.
4
Concentrated Nitric Acid Solutions: Formation Mechanism of NO
3
•
Radical. J. Phys. Chem. A 2012, 116, 7302–7307.
4
3) Parrino, F.; Livraghi, S.; Giamello, E.; Palmisano, L. The
Existence of Nitrate Radicals in Irradiated TiO
2
Aqueous
62) Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. Constructing
Suspensions in the Presence of Nitrate Ions. Angew. Chemie. Int. Ed.
2018, 57, 1–6.
Ternary CdS-Graphene-TiO hybrids on the Flatland of Graphene
2
Oxide with Enhanced Visible-Light Photoactivity for Selective
4
4) Styler, S. A.; Donaldson, D. J. Photooxidation of Atmospheric
Transformation. J. Phys. Chem. C 2012, 116, 18023–18031.
63) Han, G.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.;
Sun, Y. Visible-Light-Driven Valorization of Biomass Intermediates
Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS
Nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.
Alcohols on Laboratory Proxies for Mineral Dust. Environ. Sci.
Technol. 2011, 45, 10004–10012.
4
5) Hering, T.; Slanina, T.; Hancock, A.; Wille, U.; König, B. Visible
Light Photooxidation of Nitrate: The Dawn of a Nocturnal Radical.
Chem. Commun. 2015, 51, 6568–6571.
64) Tsukamoto, D.; Ikeda, M.; Shiraishi, Y.; Hara, T.; Ichikuni, N.;
Tanaka, S.; Hirai, T. Selective Photocatalytic Oxidation of Alcohols
to Aldehydes in Water by TiO Partially Coated with WO . Chem.
4
6) Tuck, C. O.; Perez, E.; Horvath, I. T.; Sheldon, R. A.; Poliakoff,
M. Valorization of Biomass: Deriving More Value from Waste.
Science 2012, 337, 695–699.
2
3
Eur. J. 2011, 17, 9816–9824.
65) Kasap, H.; Achilleos, D. S.; Huang, A.; Reisner, E.
4
7) Zhang, P.; Liu, Y.; Tian, B.; Luo, Y.; Zhang, J. Synthesis of Core-
Shell Structured CdS@CeO and CdS@TiO Composites and
2
2
Photoreforming of Lignocellulose into H Using Nano-Engineered
2
Comparison of their Photocatalytic Activities for the Selective
Oxidation of Benzyl Alcohol to Benzaldehyde. Catal. Today. 2017,
Carbon Nitride under Benign Conditions. J. Am. Chem. Soc. 2018,
140, 11604-11607.
66) Goebbert, D, J.; Garand, E.; Wende, T.; Bergmann, R.; Meijer,
2
81, 181-188.
8) Zhang, R.; Li, G.; Zhang, Y. Photochemical Synthesis of CdS-
4
G.; Asmis, K. R.; Neumark, D. M. Infrared Spectroscopy of the
-
MIL-125(Ti) with Enhanced Visible Light Photocatalytic
Performance for the Selective Oxidation of Benzyl Alcohol to
Benzaldehyde. Photochem. Photobiol. Sci. 2017, 16, 996-1002.
Microhydrated Nitrate Ions NO (H O)1-6. J. Phys. Chem. A 2009, 113,
3
2
7584–7592
67) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.
Environmental Applications of Semiconductor Photocatalysis.
Chem. Rev 1995, 95, 69–96.
68) D. Pletcher, R. Greff, R. Peat, L. M. Peter, Instrumental
Methods in Electrochemistry, Horwood, Cambridge, 2001; p. 197.
4
9) Kwon, Y.; Schouten, K. J. P.; Van Der Waal, J. C.; De Jong, E.;
Koper, M. T. M. Electrocatalytic Conversion of Furanic Compounds.
ACS Catal. 2016, 6, 6704–6717.
5
0) Ibhadon, A.; Fitzpatrick, P. Heterogeneous Photocatalysis:
Recent Advances and Applications. Catalysts 2013, 3, 189–218.
ACS Paragon Plus Environment