Green Chemistry
Communication
for Fig. 3, while the reaction time was fixed at 4 h. For the
samples synthesized at 2, 6, 12, 18 and 24 h, the thioanisole
conversions are 3.2%, 13.3%, 30.7%, 43.9% and 59.7%,
respectively. Obviously, the C,N-TNS obtained from the solvo-
thermal treatment of NH2-MIL-125 for 24 h has the maximum
activity to thioanisole. It can be attributed to its ultrathin
nanosheet morphology, highly accessible active sites on the
surface and abundant oxygen vacancies, which facilitate the
substrate−photocatalyst contact and promote mass transport.
2 X. J. Lang, J. C. Zhao and X. D. Chen, Angew. Chem., Int.
Ed., 2016, 55, 4697–4700.
3 C. Wang, Z. G. Xie, K. E. deKrafft and W. B. Lin, J. Am.
Chem. Soc., 2011, 133, 13445–13454.
4 S. T. Hou, N. Q. Chen, P. F. Zhang and S. Dai, Green Chem.,
2019, 21, 1455–1460.
5 J.-P.
Cao,
Y.-S.
Xue,
N.-F.
Li,
J.-J.
Gong,
R.-K. Kang and Y. Xu, J. Am. Chem. Soc., 2019, 141, 19487–
19497.
6 D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov,
E. P. Talsi, V. P. Fedin and K. Kim, Angew. Chem., Int. Ed.,
2006, 45, 916–920.
7 X. Chen, K. J. Deng, P. Zhou and Z. H. Zhang,
ChemSusChem, 2018, 11, 2444–2452.
Conclusions
In summary, we designed a C,N-TiO2 nanosheet catalyst for
the photocatalytic sulfide oxidation reaction, which possesses
many particular characteristics including an ultrathin thick-
ness (∼1.5 nm), abundant oxygen vacancies, plentiful unsatu-
rated coordination metal sites on the nanosheet surface, out-
standing light absorbance, a strong separation capability of
photogenerated electron–hole pairs and weak charge recombi-
nation. Owing to these unique features, the C,N-TiO2
nanosheet photocatalyst exhibits high performance for the
photo-oxidation of thioanisole to methyl phenyl sulfoxide in
air, at room temperature and without the use of an additional
oxidant, sacrificial reagent, co-catalyst or redox mediator. The
activity and selectivity of the C,N-TiO2 nanosheet photocatalyst
for the photo-oxidation of thioanisole to methyl phenyl sulfox-
ide are much higher than those of the reported photocatalysts
under harsh reaction conditions (e.g., using an additional
oxidant, sacrificial reagent, co-catalyst or redox mediator). This
study provides new possibilities for realizing the photocatalytic
oxidation reactions under mild conditions by nanostructure
engineering of a single catalyst, which avoids the complex syn-
thesis process and phase separation that usually occur for
composite catalysts. We anticipate that the C,N-TNS photo-
catalyst could be used for other photocatalytic reactions.
8 J. H. Kou, C. H. Lu, J. Wang, Y. K. Chen, Z. Z. Xu and
R. S. Varma, Chem. Rev., 2017, 117, 1445–1514.
9 A. Savateev, I. Ghosh, B. Kçnig and M. Antonietti, Angew.
Chem., Int. Ed., 2018, 57, 15936–15947.
10 Q.-Q. Zhou, Y.-Q. Zou, L.-Q. Lu and W.-J. Xiao, Angew.
Chem., Int. Ed., 2019, 58, 1586–1604.
11 X. J. Lang, W. R. Leow, J. C. Zhao and X. D. Chen, Chem.
Sci., 2015, 6, 1075–1082.
12 L.-Q. Wei and B.-H. Ye, ACS Appl. Mater. Interfaces, 2019,
11, 41448–41457.
13 C. L. Su, R. Tandiana, B. B. Tian, A. Sengupta, W. Tang,
J. Su and K. P. Loh, ACS Catal., 2016, 6, 3594–
3599.
14 L. F. Liu, B. X. Zhang, X. N. Tan, D. X. Tan, X. Y. Cheng,
B. X. Han and J. L. Zhang, Chem. Commun., 2020, 56, 4567–
4570.
15 Z. M. Li, C. Liu, H. Abroshan, D. R. Kauffman and G. Li,
ACS Catal., 2017, 7, 3368–3374.
16 P. F. Zhang, Y. Wang, H. R. Li and M. Antonietti, Green
Chem., 2012, 14, 1904–1908.
17 L. C. Bai, F. Li, Y. Wang, H. Li, X. J. Jiang and L. C. Sun,
Chem. Commun., 2016, 52, 9711–9714.
18 X. J. Lang, W. Hao, W. R. Leow, S. Z. Li,
J. C. Zhao and X. D. Chen, Chem. Sci., 2015, 6, 5000–
5005.
Conflicts of interest
19 H. Zhang, Q. Huang, W. J. Zhang, C. Y. Pan, J. Wang,
C. X. Ai, J. T. Tang and G. P. Yu, ChemPhotoChem, 2019, 3,
645–651.
There are no conflicts to declare.
20 H. M. Hao, Z. Wang, J.-L. Shi, X. Li and X. J. Lang,
ChemCatChem, 2018, 10, 4545–4554.
Acknowledgements
21 J. Ananpattarachai, S. Seraphin and P. Kajitvichyanukul,
Environ. Sci. Pollut. Res., 2016, 23, 3884–3896.
22 X. C. Kong, Y. M. Xu, Z. D. Cui, Z. Y. Li, Y. Q. Liang,
Z. H. Gao, S. L. Zhu and X. J. Yang, Appl. Catal., B, 2018,
230, 11–17.
23 H. J. Yu, J. Y. Li, Y. H. Zhang, S. Q. Yang, K. L. Han,
F. Dong, T. Y. Ma and H. W. Huang, Angew. Chem., Int. Ed.,
2019, 58, 3880–3884.
The authors acknowledge the financial support from the
Ministry
of
Science
and
Technology
of
China
(2017YFA0403003), the National Natural Science Foundation of
China (21525316, 21673254), the Chinese Academy of Sciences
(QYZDY-SSW-SLH013) and the Beijing Municipal Science &
Technology Commission (Z191100007219009).
24 X. Y. Fan, Y. Zhang and K. D. Zhong, Nanoscale, 2018, 10,
20443–20452.
References
1 C. N. Dai, J. Zhang, C. P. Huang and Z. G. Lei, Chem. Rev., 25 G. R. Cai and H.-L. Jiang, Angew. Chem., Int. Ed., 2017, 56,
2017, 117, 6929–6983.
563–567.
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 1165–1170 | 1169