168
B. Tyagi et al. / Applied Catalysis A: General 383 (2010) 161–168
the oxygen vacancies because of the doping of Y3+ to Zr4+ lattice.
Co-complexes are well known to bind and activate oxygen forming
Co(III)–(O2−) species. On the other hand sulfation enhances the acid
strength of Zr4+ ions and activates the O2. DMF also associates with
tetrahedrally coordinated Co(II) sites and activates the O2 [17]. The
DMF adduct, formed by the interaction of DMF with the catalytic
sites, may give rise to epoxide formation, whereas, in the absence of
DMF, no adduct is formed and the predominant formation of ben-
zaldehyde along with formaldehyde occurs through second route.
In the presence of water, water molecules cover the catalytic sites
and thus the interaction of DMF molecules with the catalytic sites
Calcination at higher temperature decreases the sulfur content of
the catalyst and also deactivates the tetrahedral Co(II) species thus
decreasing the activity of the catalyst. No conversion of styrene
was found by the addition of free-radical scavenger hydroquinone
over S-YZr and S-CoYZr (Table 3), which confirms the formation of
free-radical active oxygen species.
[1] M. Selvaraj, S.W. Song, S. Kawi, Micropor. Mesopor. Mater. 110 (2008) 472–
479.
[2] D. Swern, in: D. Swern (Ed.), Organic Peroxides, vol. 2, Wiley Interscience, New
York, 1971.
[3] R.V. Grieken, J.L. Sotelo, C. Martos, J.L.G. Fierro, M.L. Granados, R. Mariscal, Catal.
Today 61 (2000) 49–54.
[4] S.C. Laha, R. Kumar, J. Catal. 204 (2001) 64–70.
[5] D.E. Hamilton, R.S. Drago, A. Zombeck, J. Am. Chem. Soc. 109 (1987) 374–
379.
[6] B. Rhodes, S. Rowling, P. Tidswell, S. Woodward, S.M. Brown, J. Mol. Catal. A
Chem. 116 (1997) 375–384.
[7] R. Neumann, M. Dahan, Nature 388 (1997) 353–355.
[8] R.I. Kureshy, I. Ahmad, N.H. Khan, S.H.R. Abdi, K. Pathak, R.V. Jasra, J. Catal. 238
(2006) 134–141.
[9] Q. Yang, S. Wang, J. Lu, G. Xiong, Z. Feng, Q. Xin, C. Li, Appl. Catal. A: Gen. 194
(2000) 507–514.
[10] W. Zhang, M. Froba, J. Wang, P. Tanev, J. Wong, T.J. Pinnavaia, J. Am. Chem. Soc.
118 (1996) 9164–9171.
[11] Q. Yang, C. Li, J.L. Wang, P. Ying, X. Xin, W. Shi, Stud. Surf. Sci. Catal. 130 (2000)
221–226.
[12] N.S. Patil, R. Jha, B.S. Uphade, S.K. Bhargava, V.R. Choudhary, J. Catal. 227 (2005)
217–222.
[13] N.S. Patil, B.S. Uphade, P. Jana, S.K. Bhargava, V.R. Choudhary, J. Catal. 223 (2004)
236–239.
5. Conclusions
[14] V.R. Choudhary, R. Jha, N.K. Chaudhari, P. Jana, Catal. Commun. 8 (2007)
1556–1560.
[15] V.R. Choudhary, R. Jha, P. Jana, Green Chem. 8 (2006) 689–690.
[16] Q.H. Tang, Y. Wang, J. Liang, P. Wang, Q.H. Zhang, H.L. Wan, Chem. Commun.
(2004) 440–441.
[17] J. Sebastin, K.M. Jinka, R.V. Jasra, J. Catal. 244 (2006) 208–218.
[18] J. Liang, Q. Zhang, H. Wu, G. Meng, Q. Tang, Y. Wang, Catal. Commun. 5 (2004)
665–669.
[19] J. Jiang, R. Li, H. Wang, Y. Zheng, H. Chen, J. Ma, Catal. Lett. 120 (2008) 221–
228.
[20] P. Fedtke, M. Wienecke, M.C. Bunescu, T. Barfels, K. Deistung, M. Pietrzak, J.
Solid State Electrochem. 8 (2004) 626–632.
[21] S. Yu, Q. Wu, T.-A. Massood, C.-C. Liu, Sens. Acutators B 85 (2002) 212–218.
[22] J. Zhu, J.G.V. Ommen, L. Lefferts, J. Catal. 225 (2004) 388–397.
[23] J. Zhu, J.G.V. Ommen, H.J.M. Bouwmeester, L. Lefferts, J. Catal. 233 (2005)
434–441.
[24] J. Zhu, J.G.V. Ommen, L. Lefferts, Catal. Today 112 (2006) 82–85.
[25] A. Tuel, S. Gontier, R. Teissier, Chem. Commun. (1996) 651–652.
[26] J.M. Liu, S.J. Liao, G.D. Jiang, X.L. Zhang, L. Petrik, Micropor. Mesopor. Mater. 95
(2006) 306–311.
[27] M. Hino, S. Kobayashi, K. Arata, J. Am. Chem. Soc. 101 (1979) 6439.
[28] B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 317 (2010) 41–46.
[29] (a) B. Tyagi, M.K. Mishra, R.V. Jasra, Catal. Commun. 7 (2006) 52;
(b) B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 301 (2009) 67.
[30] (a) B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 276 (2007) 47;
(b) B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 286 (2008) 41.
[31] B. Tyagi, K. Sidhpuria, B. Shaik, R.V. Jasra, Ind. Eng. Chem. Res. 45 (2006)
8643–8650.
A number of non-sulfated and sulfated Y–ZrO2 based catalysts
including Co- and Fe-doped Y–ZrO2 catalysts were synthesized by
the sol–gel technique and were studied for liquid phase epoxida-
tion of styrene using molecular O2 in the presence of DMF solvent
and in the absence of any sacrificial reductant. All catalysts showed
styrene oxide and benzaldehyde as two major products. The reac-
tion studied in the absence of DMF solvent or in the presence of a
small amount of water strongly affects the styrene oxide selectiv-
ity, resulting in benzaldehyde formation predominantly. Sulfated
Co–Y–ZrO2 showed higher styrene conversion (61%) having 80%
styrene oxide selectivity due to the combined effect of sulfate
species along with tetrahedral Co(II). The addition of sulfate species
to enhance the surface acidity and thus the catalytic activity of
Y–ZrO2 based catalysts towards styrene oxidation plays a signifi-
cant role compared to other structural and textural properties such
as amorphous or crystalline nature, surface area and pore volume
of the catalysts under the reaction conditions studied. Thermally
regenerated catalysts showed slight lower conversion (54%) with-
out affecting the selectivity through three reaction cycles.
Acknowledgements
[32] M.K. Mishra, B. Tyagi, R.V. Jasra, J. Mol. Cat. A: Chem. 223 (2004) 61–65.
[33] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic
Press, New York, 1982.
[34] M.K. Mishra, B. Tyagi, R.V. Jasra, Ind. Eng. Chem. Res. 42 (2003) 5727–5736.
[35] M.G. Ferreira da Silva, J. Mater. Sci. 36 (2001) 3247–3251.
[36] X. Meng, Z. Sun, R. Wang, S. Lin, J. Sun, M. Yang, K. Lin, D. Jiang, F.-S. Xiao, Catal.
Lett. 76 (2001) 105–109.
[37] Z. Opre, T. Mallat, A. Baiker, J. Catal. 245 (2007) 482–486.
[38] V. Hulea, E. Dumitriu, Appl. Catal. A: Gen. 277 (2004) 99–106.
[39] R. Ghosh, X. Shen, J.C. Villegas, Y. Ding, K. Malinger, S.L. Suib, J. Phys. Chem. B
110 (2006) 7592–7599.
The authors are thankful to CSIR Network Programme on Catal-
ysis. We are also thankful to Analytical Science Discipline for
providing instrumental analysis, namely Dr. (Mrs.) P.A. Bhatt for
X-ray, Mr. Viral for elemental sulfur analyses and Mr. Chandrakant
C.K. for SEM analyses.
Appendix A. Supplementary data
[40] V. Rives, M.A. Ulibarri, Coord. Chem. Rev. 181 (1999) 61–120.
Supplementary data associated with this article can be found, in