LETTER
Aryl- or Alkylation of Diaryl Disulfides
1353
On the other hand, in the absence of oxygen, the reaction
of (PhS)2 with 4-MeC6H4B(OH)2 afforded sulfide 3 in
only 7% yield (Scheme 3). Thus, we can conclude that
PhSCu(I) can react with an organoboronic acid through
formation of PhSCu(II)X by the oxidation of PhSCu(I) in
the presence of oxygen.
References and Notes
(1) (a) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003,
42, 5400. (b) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100,
3205. (c) Comprehensive Organic Synthesis, Vol. 4; Trost,
B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991.
(2) (a) Metzner, P.; Thuillier, A. Sulfur Reagents in Organic
Synthesis; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.,
Eds.; Academic Press: San Diego, 1994.
(b) Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: New York, 1991.
(3) (a) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978,
13. (b) Suzuki, H.; Abe, H.; Osuka, A. Chem. Lett. 1980,
1363. (c) Bowman, W. R.; Heaney, H.; Smith, P. H. G.
Tetrahedron Lett. 1984, 25, 5821. (d) Ciattini, P. G.;
Morera, E.; Ortar, G. Tetrahedron Lett. 1995, 36, 4133.
(e) Zheng, N.; McWilliams, J. C.; Fleitz, F. J.; Armstrong, J.
D. III; Volante, R. P. J. Org. Chem. 1998, 63, 9606.
(f) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org.
Lett. 2002, 4, 2803. (g) Kwong, F. Y.; Buchwald, S. L. Org.
Lett. 2002, 4, 3517. (h) Itoh, T.; Mase, T. Org. Lett. 2004, 6,
4587.
(4) Chalcogenations of alkyl halides using dichalcogenides are
known, see: (a) Chowdhury, S.; Roy, S. Tetrahedron Lett.
1997, 38, 2149. (b) Kundu, A.; Roy, S. Organometallics
2000, 19, 105. (c) Nishino, T.; Okada, M.; Kuroki, T.;
Watanabe, T.; Nishiyama, Y.; Sonoda, N. J. Org. Chem.
2002, 67, 8696. (d) Nishino, T.; Nishiyama, Y.; Sonoda, N.
Chem. Lett. 2003, 928. (e) Ranu, B. C.; Mandal, T. J. Org.
Chem. 2004, 69, 5793. (f) Ajiki, K.; Tanaka, K. Org. Lett.
2005, 7, 4193.
A plausible reaction mechanism is described in
Scheme 4.13 In cycle A, after R2Cu(I) 7 is formed from
R2B(OH)2 and CuX, both the expected sulfide 6 and
PhSCu(I)Ln 8 were produced by the reaction of 7 with
(R1S)2. In the following step, (R1S)(R2)Cu(II) 11 is
produced via the oxidation of R1SCu 8. Finally, R1SR2 6
is produced again through the oxidation of 11.
On the other hand, in cycle B, after the insertion of CuI to
(R1S)2, the sulfide 6 and R1SCu(I) 8 are produced from the
generated copper disulfide complex 9 with R2B(OH)2.14
R2B(OH)2
4
5
R2-CuILn
(R1S)2CuXLn
CuIXLn
7
9
6
(R1S)2
4
5
6
1/2O2, X–
CuIILn
R1S
R2
B
A
11
R1SR2
6
R1S-CuILn
R1S-CuILn
5
R1S
X
CuIILn
10
8
8
(5) (a) Millois, C.; Diaz, P. Org. Lett. 2000, 2, 1705.
(b) Taniguchi, N.; Onami, T. Synlett 2003, 829.
1/2O2, X–
1/2O2, X–
(c) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915.
(d) Taniguchi, N. J. Org. Chem. 2004, 69, 6904.
(e) Taniguchi, N. Synlett 2005, 1687.
Scheme 4 A plausible reaction mechanism
It seems that the mechanism is dependent on the sub-
strates (disulfide and organoboronic acid) or copper cata-
lyst. Further investigations on the exact details of the
copper-catalyzed coupling of disulfides with organo-
boronic acids are now in progress.
(6) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000,
2, 2019.
(7) For a review of carbon–heteroatom bond formations using
organoboronic acid, see: Miyaura, N. In Metal-Catalyzed
Cross-Coupling Reactions, Vol. 1; de Meijere, A.;
Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004, 41–123.
(8) Wang, L.; Wang, M.; Huang, F. Synlett 2005, 2007.
(9) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4,
4309.
(10) Although Cu(II)X2 salts afforded 4-MeC6H4SPh in good
yield, the reaction with other substrates (alkylboronic acids
or other diaryl disulfides) showed lower reactivity.
(11) Typical Procedure.
CuI(bpy)
(5 mol%)
(PhY)2
+
4-OHCC6H4B(OH)2
2 x 4-OHCC6H4-YPh
DMSO–H2O
(2:1), air,
12
13
14
Y = Se: 96%
Y = Te: 88%
100 °C,12 h
Scheme 5 CuI-catalyzed arylation of diselenide or ditelluride with
organoboronic acid
To a mixture of CuI (1.9 mg, 0.01 mmol), bpy (1.6 mg, 0.01
mmol), DMSO (0.2 mL), and H2O (0.1 mL) were added
Ph2S2 (43.7 mg, 0.2 mmol) and PhB(OH)2 (73.1 mg, 0.60
mmol), and the mixture was stirred at 100 °C for 12 h in air.
After evaporation of the solvent, the residue was dissolved in
Et2O. The solution was washed with H2O, brine, and dried
over anhyd MgSO4. Chromatography (silica gel; hexane)
gave diphenyl sulfide (72.1 mg, 97%).
According to the procedure developed herein, the desired
selenide or telluride was prepared in 96% or 88% yield,
respectively, from diphenyl diselenide or ditelluride with
4-formylphenylboronic acid (Scheme 5).15
Diphenyl Sulfide: IR (neat): 3072, 1579, 1475, 1439 cm–1.
1H NMR (270 MHz, CDCl3): d = 7.36–7.22 (m, 10 H).
13C NMR (67.5 MHz, CDCl3): d = 135.7, 131.0, 129.1,
127.0. Anal. Calcd for C12H10S: C, 77.37; H, 5.41. Found:
C, 77.18; H, 5.49.
4-Formylphenyl Phenyl Sulfide: IR (neat): 3058, 1697,
1591, 1561, 1475 cm–1. 1H NMR (270 MHz, CDCl3):
d = 9.89 (s, 1 H), 7.70 (d, J = 8.6 Hz, 2 H), 7.49–7.53 (m, 2
H), 7.43–7.39 (m, 3 H), 7.23 (d, J = 8.6 Hz, 2 H). 13C NMR
(67.5 MHz, CDCl3): d = 191.0, 147.1, 134.2, 133.6, 131.2,
130.0, 129.7, 129.0, 127.1. Anal. Calcd for C13H10OS: C,
72.87; H, 4.70. Found: C, 72.69; H, 4.95.
In conclusion, various unsymmetrical monosulfides were
synthesized from disulfides using organoboronic acids by
a copper catalyst in air. Furthermore, the reaction condi-
tions tolerated aryl- or alkylation of both sulfide groups in
a disulfide.
Acknowledgment
This work was supported by Meiji Seika Co. Ltd.
Synlett 2006, No. 9, 1351–1354 © Thieme Stuttgart · New York