D
Synlett
Z. Shen et al.
Letter
In conclusion, we have developed a new and effective
method for the synthesis of aromatic nitriles from aryl-
acetic acids by using NaNO2 as a nitrogen source and
(7) (a) Zhang, W.; Lin, J.-H.; Zhang, P.; Xiao, J.-C. Chem. Commun.
2020, 56, 6221. (b) Zhao, Y.; Mei, G.; Wang, H.; Zhang, G.; Ding,
C. Synlett 2019, 30, 1484. (c) Ding, R.; Liu, Y.; Han, M.; Jiao, W.;
Li, J.; Tian, H.; Sun, B. J. Org. Chem. 2018, 83, 12939.
Fe(OTf) as a promoter at 50 °C. To our knowledge, there is
3
(
8) (a) Liu, M.; You, E.; Cao, W.; Shi, J. Asian J. Org. Chem. 2019, 8,
850. (b) Chen, H.; Mondal, A.; Wedi, P.; van Gemmeren, M. ACS
no previous example of the use of NaNO2 as a nitrogen
source in the conversion of arylacetic acids into aromatic
nitriles. The mild conditions permit the reaction to be com-
patible with a broad range of functional groups, such as es-
ter, carboxy, hydroxy, acetamido, halo, nitro, cyano, me-
thoxy, and even the highly reactive formyl group. Under the
present condition, a series of phenylacetic acids and naph-
thylacetic acids, as well as 2-furylacetic acid and 2-thienyl-
acetic acid, were smoothly converted into the correspond-
ing nitriles in low to high yields.
1
Catal. 2019, 9, 1979. (c) Hayrapetyan, D.; Rit, R. K.; Kratz, M.;
Tschulik, K.; Gooßen, L. J. Chem. Eur. J. 2018, 24, 11288.
(9) (a) Liu, J.; Zhang, C.; Zhang, Z.; Wen, X.; Dou, X.; Wei, J.; Qiu, X.;
Song, S.; Jiao, N. Science 2020, 367, 281. (b) Wang, Y.; Zhang, H.;
Xie, S.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Organometallics 2020,
3
9, 824. (c) Hota, P. K.; Maji, S.; Ahmed, J.; Rajendran, N. M.;
Mandal, S. K. Chem. Commun. 2020, 56, 575.
(
(
10) Lamani, M.; Prabhu, K. R. Angew. Chem. Int. Ed. 2010, 49, 6622.
11) (a) Gu, L.; Jin, C.; Zhang, H.; Liu, J.; Li, G.; Yang, Z. Org. Biomol.
Chem. 2016, 14, 6687. (b) Xu, B.; Jiang, Q.; Zhao, A.; Jia, J.; Liu, Q.;
Luo, W.; Guo, C. Chem. Commun. 2015, 51, 11264.
(12) Cui, J.; Song, J.; Liu, Q.; Liu, H.; Dong, Y. Chem. Asian J. 2018, 13, 482.
Funding Information
(13) (a) Patil, B. N.; Lade, J. J.; Karpe, A. S.; Pownthurai, B.;
Vadagaonkar, K. S.; Mohanasrinivasan, V.; Chaskar, A. C. Tetrahe-
dron Lett. 2019, 60, 891. (b) Hussain, F. H.; Suria, M.; Namdeo,
A.; Borah, G.; Dutta, D.; Goswami, T.; Paharia, P. Catal. Commun.
The authors would like to thank the National Natural Science Founda-
tion of China (Grant No. 21603060) for their financial support.
N
ati
o
nal Natural
S
cience
F
o
u
n
datio
n
o
f
C
h
ina(2
1
6
0
3
0
6
0)
2
019, 124, 76. (c) Hatvate, N. T.; Takale, B. S.; Ghodse, S. M.;
Telvekar, V. N. Tetrahedron Lett. 2018, 59, 3892. (d) Fang, J.;
Wang, D.; Deng, G.-J.; Gong, H. Tetrahedron Lett. 2017, 58, 4503.
Supporting Information
(
e) Wang, D.; Fang, J.; Deng, G.-J.; Gong, H. ACS Sustainable
Supporting information for this article is available online at
Chem. Eng. 2017, 5, 6398.
https://doi.org/10.1055/s-0040-1707300.
S
u
p
p
orting Informatio
n
S
u
p
p
orti
n
gInformatio
n
(
(
14) Feng, Q.; Song, Q. Adv. Synth. Catal. 2014, 356, 1697.
15) Kangani, C. O.; Day, B. W.; Kelley, D. E. Tetrahedron Lett. 2008,
4
9, 914.
References and Notes
(
16) Nitriles 2a–r: General Procedure
A tube of approximate volume 45 mL was charged with the
appropriate arylacetic acid (0.5 mmol), NaNO2 (3 mmol),
(
1) (a) Zhao, L.; Dong, Y.; Xia, Q.; Bai, J.; Li, Y. J. Org. Chem. 2020, 85,
6471. (b) Xu, S.; Teng, J.; Yu, J.-T.; Sun, S.; Cheng, J. Org. Lett.
Fe(OTf) (1 mmol), and undried DMSO (2 mL), and the air in the
2
019, 21, 9919. (c) Wang, Z.; Wang, X.; Ura, Y.; Nishihara, Y. Org.
3
tube was replaced by argon gas. The tube was sealed and the
mixture was heated with magnetic stirring at 50 °C for 10 h,
then cooled to r.t. The solvent was evaporated, and the residue
was purified by column chromatography (silica gel).
Lett. 2019, 21, 6779. (d) Liu, L.-Y.; Yeung, K.-S.; Yu, J.-Q. Chem.
Eur. J. 2019, 25, 2199. (e) Bhagat, S. B.; Telvekar, V. N. Synlett
2
018, 29, 874. (f) Gao, G.; Sun, P.; Li, Y.; Wang, F.; Zhao, Z.; Qin,
Y.; Li, F. ACS Catal. 2017, 7, 4927. (g) Li, J.; Liu, G.; Long, X.; Gao,
G.; Wu, J.; Li, F. J. Catal. 2017, 355, 53.
11b
Biphenyl-4-carbonitrile (2a)
1
White solid; yield: 77.1 mg (86%); m.p. 84–86°C. H NMR (400
(
2) (a) Hosseinian, A.; Ahmadi, S.; Monfared, A.; Nezhad, P. D. K.;
Vessally, E. Curr. Org. Chem. 2018, 22, 1862. (b) Chaitanya, M.;
Anbarasan, P. Org. Biomol. Chem. 2018, 16, 7084. (c) Jereb, M.;
Hribernik, L. Green Chem. 2017, 19, 2286. (d) Ghodse, S. M.;
Takale, B. S.; Hatvate, N. T.; Telvekar, V. N. ChemistrySelect 2018, 3,
MHz, CDCl ): = 7.76 (d, J = 8.4 Hz, 2 H), 7.71 (d, J = 8.4 Hz, 2 H),
3
1
3
7
.61–7.63 (m, 2 H), 7.50–7.53 (m, 2 H), 7.44–7.48 (m, 1 H).
C
NMR (100 MHz, CDCl ): = 145.7, 139.2, 132.6, 129.1, 128.7,
3
1
27.8, 127.3, 119.0, 110.9.
5
b
Methyl 4-Cyanobenzoate (2j)
4168. (e) Yabe, O.; Mizufune, H.; Ikemoto, T. Synlett 2009, 1291.
White solid; yield: 62 mg (77%); m.p. 63–65°C. 1H NMR (400
(
(
3) Li, J.; Xu, W.; Ding, J.; Lee, K.-H. Tetrahedron Lett. 2016, 57, 1205.
4) (a) Shee, M.; Shah, S. S.; Singh, N. D. P. Chem. Commun. 2020, 56,
MHz, CDCl ): = 8.15 (d, J = 8.1 Hz, 2 H), 7.76 (d, J = 8.1 Hz, 2 H),
3
3.97 (s, 3 H).
4240. (b) Niknam, E.; Panahi, F.; Khalafi-Nezhad, A. Eur. J. Org.
C NMR (100 MHz, CDCl ): = 165.4, 133.9, 132.2, 130.1, 118.0,
Chem. 2020, 2020, 2699. (c) Chen, H.; Sun, S.; Liu, Y. A.; Liao, X.
ACS Catal. 2020, 10, 1397. (d) Mills, L. R.; Graham, J. M.; Patel, P.;
Rousseaux, S. A. L. J. Am. Chem. Soc. 2019, 141, 19257.
3
1
16.4, 52.7.
1
-Naphthonitrile (2p)5b
White solid; yield: 52.8 mg (69%); m.p. 37–39°C. 1H NMR (400
(5) (a) Nandi, J.; Leadbeater, N. E. Org. Biomol. Chem. 2019, 17, 9182.
MHz, CDCl ): = 8.25 (d, J = 8.3 Hz, 1 H), 8.09 (d, J = 8.3 Hz, 1 H),
(
(
b) Fang, W.-Y.; Qin, H.-L. J. Org. Chem. 2019, 84, 5803.
c) Gurjar, J.; Bater, J.; Fokin, V. V. Chem. Eur. J. 2019, 25, 1906.
3
7
.93 (t, J = 7.6 Hz, 2 H), 7.71 (t, J = 7.0 Hz, 1 H), 7.64 (t, J = 7.2 Hz, 1
13
H), 7.54 (t, J = 8.0 Hz, 1 H). C NMR (100 MHz, CDCl ): = 134.7,
(
6) (a) Olivares, M.; Knörr, P.; Albrecht, M. Dalton Trans. 2020, 49,
981. (b) Das, H. S.; Das, S.; Dey, K.; Singh, B.; Haridasan, R. K.;
Das, A.; Ahmed, J.; Mandal, S. K. Chem. Commun. 2019, 55,
3
1
34.2, 132.3, 129.2, 129.1, 128.4, 128.1, 127.7, 126.4, 119.3, 109.4.
17) (a) Ge, J.-J.; Yao, C.-Z.; Wang, M.-M.; Zheng, H.-X.; Kang, Y.-B.; Li, Y.-
D. Org. Lett. 2016, 18, 228. (b) Ahmad, A.; Spenser, I. D. Can. J. Chem.
960, 38, 1625. (c) Jereb, M. Curr. Org. Chem. 2013, 17, 1694.
18) (a) Song, Q.; Feng, Q.; Zhou, M. Org. Lett. 2013, 15, 5990.
b) Zorin, A. V.; Lenkova, A. O.; Khachaturyan, A. B.; Zorin, V. V.
1
(
11868. (c) Lu, G.-P.; Li, X.; Zhong, L.; Li, S.; Chen, F. Green Chem.
1
2
019, 21, 5386. (d) Achard, T.; Egly, J.; Sigrist, M.; Maisse-
(
François, A.; Bellemin-Laponnaz, S. Chem. Eur. J. 2019, 25,
3271.
(
1
Russ. J. Gen. Chem. 2018, 88, 1590. (c) Li, Y.-T.; Liao, B.-S.; Chen,
H.-P.; Liu, S.-T. Synthesis 2011, 2639.
©
2020. Thieme. All rights reserved. Synlett 2020, 31, A–D