Edge Article
Chemical Science
Residual density in the F
proximity to the secondary benzenesulfonamide. Rotation of
o
–F
c
omit map was encountered in
4 P. J. Deuss, R. denHeeten, W. Laan and P. C. J. Kamer,
Chem.–Eur. J., 2011, 17, 4680.
5 M. T. Reetz, Top. Organomet. Chem., 2009, 25, 63.
6 S. Abe, T. Ueno and Y. Watanabe, Top. Organomet. Chem.,
2009, 25, 25.
7 J. Steinreiber and T. R. Ward, Coord. Chem. Rev., 2008, 252,
751.
8 D. K. Garner, L. Liang, D. A. Barrios, J.-L. Zhang and Y. Lu,
ACS Catal., 2011, 1, 1083.
ꢂ
this group around the N –C–C–N bond by 135 positions the
py
sulfur atom in this density. Thus, upon dissociation of the
iridium, the secondary benzenesulfonamide may undergo a
conformational change from an eclipsed- to an anticlinal-
conformation. This would account for up to 70% of the total
occupancy of the ligand (ESI Fig. S6†). In both, the eclipsed- and
the anticlinal-conformation, the aromatic ring of the secondary
benzenesulfonamide group is located in proximity to the side
chains of E69, D72, I91 and F131.
9 Q. Jing, K. Okrasa and R. J. Kazlauskas, Chem.–Eur. J., 2009,
15, 1370.
A qualitative model of the ATHase 9 3 hCA II in complex 10 M. Ohashi, T. Koshiyama, T. Ueno, M. Yanase, H. Fujii and
with the salsolidine precursor was constructed based on the Y. Watanabe, Angew. Chem., Int. Ed., 2003, 42, 1005.
structural and the functional data (Fig. 3). The substrate 11 C. Mayer, D. G. Gillingham, T. R. Ward and D. Hilvert, Chem.
binding site is constituted by complex 9 and residues H4, L60, Commun., 2011, 47, 12068.
N62, H64, K170 and G171, which, thus, are target amino acids 12 T. Matsuo, C. Imai, T. Yoshida, T. Saito, T. Hayashi and
for future genetic optimization of the ATHase (ESI Fig. S7†). S. Hirota, Chem. Commun., 2012, 48, 1662.
It is conceivable that the reduction of the side-chain-size in 13 C. Esmieu, M. V. Cherrier, P. Amara, E. Girgenti, C. Marchi-
the I91A mutant changes the relative position of the substrate to
the cofactor. However, it is not obvious from the X-ray structure
how this abrogates the observed substrate inhibition.
Delapierre, F. Oddon, M. Iannello, A. Jorge-Robin,
C. Cavazza and S. M ´e nage, Angew. Chem., Int. Ed., 2013, 52,
3922.
1
1
1
1
4 J. Bos, F. Fusetti, A. J. M. Driessen and G. Roelfes, Angew.
Chem., Int. Ed., 2012, 51, 7472.
5 Y. Lu, N. Yeung, N. Sieracki and N. M. Marshall, Nature,
3
Outlook
2009, 460, 855.
With the aim of creating articial transfer hydrogenases based
on hCA II as protein scaffold, ve IrCp*-complexes bearing N^N
bidentate ligands were screened. While the bare catalyst proved
6 A. Fern ´a ndez-Gacio, A. Codina, J. Fastrez, O. Riant and
P. Soumillion, ChemBioChem, 2006, 7, 1013.
7 Q. Jing and R. J. Kazlauskas, ChemCatChem, 2010, 2, 953.
only moderately active, upon incorporation in hCA II, complex
5
18 V. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin,
K. L. Gudiksen, D. B. Weibel and G. M. Whitesides, Chem.
Rev., 2008, 108, 946.
[(h -Cp*)Ir(pico 4)Cl] 9 displayed signicantly improved cata-
ꢂ
lytic performance both in terms of activity and selectivity at 4 C
(up to 68% ee). Saturation kinetic analysis of the WT ATHase
19 F. W. Monnard, T. Heinisch, E. S. Nogueira, T. Schirmer and
T. R. Ward, Chem. Commun., 2011, 47, 8238.
revealed however severe substrate inhibition. Guided by the X-
ray structure of complex [(h -Cp*)Ir(pico 4)Cl] 9 3 WT hCA II,
the catalytic site was expanded by mutation of close-lying
isoleucine 91 into an alanine. This chemogenetically optimized
ATHase [(h -Cp*)Ir(pico 4)Cl] 9 3 I91A hCA II no longer
suffered from substrate inhibition and displayed signicant
rate enhancement over the organometallic catalyst. Current
efforts are aimed at further engineering the catalytic site by
genetic introduction of additional substrate recognition
elements.
5
2
0 D. Can, B. Spingler, P. Schmutz, F. Mendes, P. Raposinho,
C. Fernandes, F. Carta, A. Innocenti, I. Santos,
T. C. Supuran and R. Alberto, Angew. Chem., Int. Ed., 2012,
5
51, 3354.
2
2
1 M. D u¨ rrenberger, T. Heinisch, Y. Wilson, T. Rossel,
E. Nogueira, L. Kn ¨o rr, A. Mutschler, K. Kersten,
M. Zimbron, J. Pierron, T. Schirmer and T. R. Ward,
Angew. Chem., Int. Ed., 2011, 50, 3026.
2 C. Wang, B. Villa-Marcos and J. Xiao, Chem. Commun., 2011,
47, 9773.
Acknowledgements
23 J. G. Cordaro, J. K. McCusker and R. G. Bergman, Chem.
Commun., 2002, 1496.
FWM thanks the Novartis Foundation and the Swiss Nano-
science Institute for nancial support. EN thanks Marie Curie
ITN (Biotrains FP7-ITN-238531). TH thanks the Marie Curie ITN
2
4 A. Shaabani, P. Mirzaei, S. Naderi and D. G. Lee, Tetrahedron,
004, 60, 11415.
2
2
5 I. K. Khanna, Y. Yu, R. M. Huff, R. M. Weier, X. Xu,
F. J. Koszyk, P. W. Collins, J. N. Cogburn, P. C. Isakson,
C. M. Koboldt, J. L. Masferrer, W. E. Perkins, K. Seibert,
A. W. Veenhuizen, J. Yuan, D. C. Yang and Y. Y. Zhang,
J. Med. Chem., 2000, 43, 3168.
(BioChemLig FP7-ITN-238434) TRW thanks C. Fierke for the
hCA II plasmid and Umicore for a loan of Ir.
References
2
6 W. F. McCalmont, J. R. Patterson, M. A. Lindenmuth,
T. N. Heady, D. M. Haverstick, L. S. Gray and
T. L. Macdonald, Bioorg. Med. Chem., 2005, 13, 3821.
1
D. Qi, C.-M. Tann, D. Haring and M. D. Distefano, Chem.
Rev., 2001, 101, 3081.
2
3
T. R. Ward, Acc. Chem. Res., 2011, 44, 47.
F. Rosati and G. Roelfes, ChemCatChem, 2010, 2, 916.
27 B. L. Bourdonnec, E. Meulon, S. Yous, J. F. Goossens,
R. Houssin and J. P. Henichart, J. Med. Chem., 2000, 43, 2685.
This journal is ª The Royal Society of Chemistry 2013
Chem. Sci.