Paper
RSC Advances
2
3
T. Gungor, A. Fouquet, J. M. Teulon, D. Provost, M. Cazes and
A. Cloarec, J. Med. Chem., 1992, 35, 4455–4463.
K. M. Meyers, N. Kim, J. L. M ´e ndez-Andino, X. E. Hu,
R. N. Mumin, S. R. Klopfenstein, J. A. Wos, M. C. Mitchell,
J. L. Paris, D. C. Ackley, J. K. Holbert, S. W. Mittelstadt and
O. Reizes, Bioorg. Med. Chem. Lett., 2007, 17, 814–818.
I. Salama, C. Hocke, W. Utz, O. Prante, F. Boeckler,
H. H u¨ bner, A. Torsten Kuwert and P. Gmeine, J. Med.
Chem., 2007, 489–500.
4
Fig. 9 XRD (a) and STEM (b) of Fe
catalytic test.
3 4
O @Cu-apatite after the first
5 P. E. Fanta, Synthesis, 1974, 1974, 9–21.
6 K. Matsuo, Y. Shichida, H. Nishida, S. Nakata and M. Okubo,
J. Phys. Org. Chem., 1994, 7, 9–17.
7
A. Kiyomori, J.-F. Marcoux and S. L. Buchwald, Tetrahedron
Lett., 1999, 40, 2657–2660.
Also, from STEM analysis, Cu-apatite was still tightly anchored
on the surface of Fe aer one catalytic cycle. The catalytic
effect of copper ions leached from the Fe @Cu-apatite was
studied in the N-arylation reaction, which was carried out under
the optimum conditions. Aer 2 hours of heating, the catalyst
was removed and the remaining reaction mixture was reheated.
3
O
4
8 P. Y. S. Lam, S. Deudon, K. M. Averill, R. Li, M. Y. He,
A. Philip DeShong and C. G. Clark, J. Am. Chem. Soc., 2000,
122, 7600–7601.
9 G. I. Elliott and J. P. Konopelski, Org. Lett., 2000, 2, 3055–
3057.
3 4
O
It was observed that the concentration of the desired product 10 J. Baruah, K. Gogoi, A. Dewan, G. Borah and U. Bora, Bull.
didn't increase even aer heating for an additional 8 h. To
Korean Chem. Soc., 2017, 38, 1203–1208.
further evaluate the catalytic effect of copper ions leached from 11 A. Gogoi, G. Sarmah, A. Dewan and U. Bora, Tetrahedron
the Fe @Cu-apatite, ICP analysis was used against the cata-
Lett., 2014, 55, 31–35.
lyst before and aer reaction. The copper concentration of the 12 I. Munir, A. F. Zahoor, N. Rasool, S. A. R. Naqvi, K. M. Zia and
catalyst was found to be 1.83 wt% for the fresh catalyst and
R. Ahmad, Mol. Diversity, 2019, 23, 215–259.
.82 wt% aer one catalytic cycle in N-arylation of imidazole, 13 A. Siva Reddy, K. Ranjith Reddy, D. Nageswar Rao,
3 4
O
1
which conrms negligible copper leaching.
C. K. Jaladanki, P. V. Bharatam, P. Y. S. Lam and P. Das,
Org. Biomol. Chem., 2017, 15, 801–806.
1
4 Y. Zou, H. Lin, P. A. Maggard and A. Deiters, Eur. J. Org.
Chem., 2011, 2011, 4154–4159.
4
. Conclusion
In summary, magnetic Fe O @Cu-apatite core–shell nano- 15 K. R. Reddy, N. S. Kumar, B. Sreedhar and M. L. Kantam, J.
3
4
catalysts have been successfully prepared using a hydrothermal
Mol. Catal. A: Chem., 2006, 252, 136–141.
method. The physico-chemical properties of these materials were 16 S. M. Islam, S. Mondal, P. Mondal, A. S. Roy, K. Tuhina,
evaluated by FT-IR, XRD, SEM, STEM as well as the adsorption–
desorption of nitrogen. The prepared catalysts showed potential
N. Salam and M. Mobarak, J. Organomet. Chem., 2012, 696,
4264–4274.
capability for the preparation of N-arylimidazoles through the N- 17 R. Xiao, H. Zhao and M. Cai, Tetrahedron, 2013, 69, 5444–
arylation reaction under mild conditions. Thereaer, the optimal
5450.
reaction conditions were explored, and methanol was identied 18 S. K. Das, P. Deka, M. Chetia, R. C. Deka, P. Bharali and
as the optimum solvent of the reaction, which is environmentally
U. Bora, Catal. Lett., 2018, 148, 547–554.
friendly. Furthermore, the Fe @Cu-apatite can also be easily 19 B. M. Choudary, C. Sridhar, M. L. Kantam, A. G. T. Venkanna
3 4
O
separated by an external magnet and reused for ve runs with
only a slight decrease in its catalytic activity.
and B. Sreedhar, J. Am. Chem. Soc., 2005, 127, 9948–9949.
20 N. Panda, A. K. Jena, S. Mohapatra and S. R. Rout,
Tetrahedron Lett., 2011, 52, 1924–1927.
2
1 R. Zhang, C. Miao, Z. Shen, S. Wang, C. Xia and W. Sun,
ChemCatChem, 2012, 4, 824–830.
Conflicts of interest
The authors declare that they have no competing interests.
22 S. Sebti, M. Zahouily, H. Lazrek, J. Mayoral and
D. Macquarrie, Curr. Org. Chem., 2008, 12, 203–232.
2
3 R. Z. LeGeros, Calcium phosphates in oral biology and
medicine, 1991, vol. 15.
Acknowledgements
The nancial assistance of the MAScIR Foundation, towards 24 M. Epple, K. Ganesan, R. Heumann, J. Klesing, A. Kovtun,
this research is hereby acknowledged.
S. Neumann and V. Sokolova, J. Mater. Chem., 2010, 20,
8–23.
1
2
5 A. Solhy, R. Tahir, S. Sebti, R. Skouta, M. Bousmina,
M. Zahouily and M. Larzek, Appl. Catal., A, 2010, 374, 189–
193.
References
1
P. Cozzi, G. Carganico, D. Fusar, M. Grossoni,
M. Menichincheri, V. Pinciroli, R. Tonani, F. Vaghi and 26 A. Smahi, A. Solhy, H. El Badaoui, A. Amoukal, A. Tikad,
P. Salvati, J. Med. Chem., 1993, 36, 2964–2972.
M. Maizi and S. Sebti, Appl. Catal., A, 2003, 250, 151–159.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 36471–36478 | 36477