Page 7 of 9
PleaseRd So Cn oA t da vd aj un s ct ems argins
DOI: 10.1039/C6RA23781A
Journal Name
ARTICLE
1
10
00
120
Acknowledgements
1
We gratefully acknowledge SIF DST-VIT-FIST, VIT University, Vellore
for providing NMR, GC-MS, FT-IR as well as other required facilities
and CDRI Lucknow for providing elemental analysis data. The
authors are also grateful for financial help provided by RGEMS, VIT
University, Vellore and other facilities provided by “Smart Materials
Laboratory for Bio-sensing and Catalysis.”
1
8
6
4
2
0
00
9
8
7
6
5
4
3
0
0
0
0
0
0
0
0
0
0
0
References
1
2
3
4
A. R. Gholap, K. Venkatesan, T. Daniel, R. J. Lahoti and K. V.
Srinivasan, Green Chem., 2004, 6, 147.
K. S. Atwal, G. C. Rovnyak, B. C. O’Reilly and J. Schwartz, J. Org.
Chem., 1989, 54, 5898.
B. Ahmed, R. A. Khan, Habibullah and M. Keshari, Tetrahedron
Lett., 2009, 50, 2889.
H. G. O. Alvim, G. A. Bataglion, L. M. Ramos, A. L. de Oliveira,
H. C. B. de Oliveira, M. N. Eberlin, J. L. de Macedo, W. A. da Silva
and B. A. D. Neto, Tetrahedron, 2014, 70, 3306.
V. Polshettiwar and R. S. Varma, Tetrahedron Lett., 2007, 48,
1
00 200 300 400 500 600 700 800
o
Temperature
( C)
Fig. 3 The TG and DTG thermogram of PSBIL.
Thermogravimetric analysis was studied for defining the
stability of synthesized PSBIL (Fig. 3). TG and DTG analysis of the
PSBIL was examined in the range of 30 to 800 °C and the
5
6
7
343.
Z. J. Quan, Y. X. Da, Z. Zhang and X. C. Wang, Catal. Commun.,
009, 10, 1146.
atmosphere. The thermogram shows the initial weight loss of 7 H. Murata, H. Ishitani and M. Iwamoto, Org. Biomol. Chem.,
010, 8, 1202.
-1
temperature was increased at the rate of 10 °C min in a
2
N
2
2
7
.0305% at 98.2 °C due to the physically adsorbed water.
8
9
S. Rostamnia and K. Lamei, Chin. Chem. Lett., 2012, 23, 930.
M. Moghaddas, A. Davoodnia, M. M. Heravi and N. T. Hoseini,
Chin. J. Catal., 2012, 33, 706.
The another weight loss of 42.4089% started from 334.1 °C to
74.9 C and this weight loss is due to the alkyl sulphonic groups
°
4
present in the PSBIL.
1
1
1
0 A. G. Choghamarani and P. Zamani, Chin. Chem. Lett., 2013, 24,
804.
1 N. Sharma, U. K. Sharma, R. Kumar, Richa and A. K. Sinha, RSC
Adv., 2012, 2, 10648.
The final weight loss 25.3954% observed from 474.9 to 713.2 °C
poly(1-(4-Vinylbenyl-1H-benzoimidazole) in the PSBIL. From TGA
analysis it is observed that the weight loss is negligible up to
2 P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. 2000,
°
3
34.1 C, therefore it is concluded that PSBIL catalyst is suitable for
3
9, 3772.
high-temperature reaction.
1
1
3 J. S. Wilkes, J. Mol. Catal. A: Chem., 2004, 214, 11.
4 Z. Andrade, K. Karlose and L. M. Alves, Curr. Org. Chem., 2005, 9,
1
95.
Conclusions
15 D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth
and M. Forsyth, Chem. Commun., 2006, 18, 1905.
A polymer-supported benzimidazolium based ionic liquid was
successfully synthesized by reaction of poly(vinylbenzyl chloride)
and benzimidazole followed by ring opening of 1,4-butane sultone
and acidification with sulphuric acid. The resulting PSBIL was found
highly competent for the synthesis of DHPM derivatives via Biginelli
reaction under mild conditions. The present PSBIL catalyst has been
1
1
1
1
6 A. C. Cole, J. L. Jensen, I. Ntai, T. Tran, K. J. Weaver, D. C. Forbes
and J. H. Davis, J. Am. Chem. Soc., 2002, 124, 5962.
7 H. Wu, F. Yang, P. Cui, J. Tang and M. He, Tetrahedron Lett.,
2
004, 45, 4963.
8 H. Xing, T. Wang, Z. Zhou and Y. Dai, Ind. Eng. Chem. Res., 2005,
4 (11), 4147.
9 A. Atef and J. P. Bazureau, Org. Process Res. Dev., 2005, 9, 743.
4
tolerate aliphatic, aromatic, heterocyclic aldehydes and affords 20 Y. Jeong, D. Y. Kim, Y. Choi and J. S. Ryu, Org. Biomol. Chem.,
2
011, 9, 374.
good to excellent yields. Furthermore, the PSBIL catalyst exhibit
excellent thermal stability and reproducibility. The PSBIL catalyst
signifies a novel class of high loaded heterogeneous catalyst which
is particularly promising in green chemistry and found to be
2
2
1 A. R. Gholap, K. Venkatesan, T. Daniel, R. J. Lahoti and K. V.
Srinivasan, Green Chem., 2004, 6, 147.
2 P. Karthikeyan, S. S. Kumar, S. A. Aswar, P. N. Muskawar and P. R.
Bhagat, Res. Chem. Intermed., 2013, 39, 1335.
effective in terms of the yield, catalyst dose, simple work-up 23 M. Li, W. S. Guo, L. R. Wen, Y. F. Li and H. Z. Yang, J. Mol. Catal.
A: Chem., 2006, 258, 133.
procedure, separation and reusability of the catalyst. The DHPMs
2
2
4 F. Dong, L. Jun, Z. Xinli, Y. Zhiwen and L. Zuliang, J. Mol. Catal. A:
Chem., 2007, 274, 208.
5 L. D. S. Yadav, A. Rai, V. K. Rai and C. Awasthi, Tetrahedron, 2008,
was separated easily from the reaction medium using a spatula,
followed by washing with water and drying to get analytically pure
products. Also, the industrial applicability of this protocol has
6
4, 1420.
demonstrated by the synthesis of mitotic Kinesin EG5 inhibitor 26 L. M. Ramos, A. Y. Ponce de Leon y Tobio, M. R. dos Santos, H. C.
de Oliveira, A. F. Gomes, F. C. Gozzo, A. L. de Oliveira and B. A.
Neto, J. Org. Chem., 2012, 77, 10184.
Monastrol under optimized conditions.
2
2
7 H. Kefayati, F. Asghari and R. Khanjanian, J. Mol. Liq., 2012, 172,
47.
8 Z. Chen, R. Fu, W. Chai, H. Zheng, L. Sun, Q. Lu and R. Yuan,
1
Tetrahedron, 2014, 70, 2237.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins