dendrimers developed by Astruc et al.6g also showed the
ability of binding oxo anions through the 1,2,3-triazole ring
localized inside the dendrimers. However, to our knowledge,
the potential of the 1,2,3-triazolium ring7 to act as a hydrogen
bond donor for anion recognition has not yet been explored.
As compared to 1,2,3-triazole, the 1,2,3-triazolium ring is
expected to be a better hydrogen bond donor for anion
recognition.
Scheme 1
The chemistry of anion recognition has developed rapidly
in the past few years due to its biological and medical
significance. Many receptors based on different types of
sensing moieties involving N-H‚‚‚X-, O-H‚‚‚X-, and (C-
H)+‚‚‚X- hydrogen bond interactions have been developed.8
In recent years, bile acids have attracted considerable interest
as building blocks for the construction of receptors for anion
recognition because of their unique structural features.9 Our
ongoing interest9i,j in developing new types of steroid-based
receptors for anion recognition and the interesting properties
of the 1,2,3-triazole ring prompted us to design bile acid-
based triazolium receptors for anion recognition.
Herein, we report for the first time the synthesis and anion-
binding properties of 1,2,3-triazolium-based receptors in
which the C-5 proton of the triazolium ring actively
participates in the recognition of anions through C-H‚‚‚X-
hydrogen bond interactions. We used click chemistry involv-
ing the 1,3-dipolar cycloaddition of steroidal diazide and
alkynes for the construction of cyclic and acyclic triazolium
receptors. The synthesis of cyclic receptors 5a and 5b based
on deoxycholic acid has been outlined in Scheme 1. The
steroidal diazido compound, methyl 3R,12R-bis(azidoacetyl)-
deoxycholate 2, was obtained by the treatment of methyl
(5) (a) Angell, Y. L.; Burgess, K. Chem. Soc. ReV. 2007, 36, 1674. (b)
Oh, K.; Guan, Z. Chem. Commun. 2006, 29, 3069. (c) Angell, Y.; Burgess,
K. J. Org. Chem. 2005, 70, 9595.
3R,12R-bis(bromoacetyl)deoxycholate9i 1 with sodium azide
in DMF, which on subsequent treatment with m-bis(prop-
argyloxy)benzene10 3a and p-bis(propargyloxy)benzene10 3b
in t-BuOH in the presence of CuSO4 and sodium ascorbate
(click reaction) gave cycloadducts 4a and 4b, respectively,
in high yields. The methiodide salts of cyclic receptors 5a
and 5b were obtained by methylation of 4a and 4b with
methyl iodide, which were further anion exchanged with
NH4PF6 in MeOH/CHCl3 to give their PF6- salts. The acyclic
receptor 7 was synthesized by the reaction of di-azido
compound 2 with 2 equiv of phenylacetylene followed by
methylation and then anion exchange with NH4PF6 in similar
reaction conditions (Scheme 2).
(6) (a) Bronisz, R. Inorg. Chem. 2005, 13, 4463. (b) Li, Y.; Huffman, J.
C.; Flood, A. H. Chem. Commun. 2007, 26, 2692. (c) Chan, T. R.; Hilgraf,
R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853. (d) Chang,
K.-C.; Su, I.-H.; Senthilvelan, A. Chung, W.-S. Org. Lett. 2007, 9, 3363.
(e) David, O.; Maisonneuve, S.; Xie, J. Tetrahedron Lett. 2007, 48, 6527.
(f) Chang, K.-C.; Su, I.-H.; Lee, G.-H.; Chung, W.-S. Tetrahedron Lett.
2007, 48, 7274. (g) Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Alves, S.;
Astruc, D. Angew. Chem., Int. Ed. 2007, 46, 872.
(7) (a) Mohr, R.; Hertel, H. Chem. Ber. 1963, 96, 114. (b) Begtrup, M.
Acta Chem. Scand. 1967, 21, 1234. (c) Begtrup, M. Acta Chem. Scand.
1971, 25, 803. (d) Begtrup, M. Acta Chem. Scand. 1971, 25, 3500. (e)
Katritzky, A. R.; Suwinski, J. W. Tetrahedron Lett. 1974, 47, 4123. (f)
Koren, A. O. Heterocycl. Chem. 2002, 39, 1111.
(8) (a) Gale, P. A.; Quesada, R. Coord. Chem. ReV. 2006, 250, 3219.
(b) Gale, P. A. Acc. Chem. Res. 2006, 39, 465. (c) Katayev, E. A.; Ustynyuk,
Y. A.; Sessler, J. L. Coord. Chem. ReV. 2006, 250, 3004. (d) Kang, S. O.;
Hossain, M. A.; Bowman-James, K. Coord. Chem. ReV. 2006, 250, 3038.
(e) Lankshear, M. D.; Beer, P. D. Coord. Chem. ReV. 2006, 250, 3142. (f)
Filby, M. H.; Steed, J. W. Coord. Chem. ReV. 2006, 250, 3200. (g) Yoon,
J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. ReV. 2006, 35, 355. (h)
Kang, S. O.; Begum, R. A.; Bowman-James, K. Angew. Chem., Int. Ed.
2006, 45, 7882.
(9) (a) Davis, A. P. Coord. Chem. ReV. 2006, 250, 2939. (b) Virtanen,
E.; Kolehmainen, E. Eur. J. Org. Chem. 2004, 16, 3385. (c) Clare, J. P.;
Ayling, A. J.; Joos, J.-B.; Sisson, A. L.; Magro, G.; Perez-Payan, M. N.;
Lambert, T. N.; Shukla, R.; Smith, B. D.; Davis, A. P. J. Am. Chem. Soc.
2005, 127, 10739. (d) Fang, L.; Chan, W.-H.; He, Y.-B.; Kwong, D. W. J.;
Lee, A. W. M. J. Org. Chem. 2005, 70, 7640. (e) Liu, S.-Y.; Fang, L.; He,
Y.-B.; Chan, W.-H.; Yeung, K.-T.; Cheng, Y.-K.; Yang, R.-H. Org. Lett.
2005, 7, 5825. (f) Ghosh, S.; Choudhary, A. R.; Row, T. N. G.; Maitra, U.
Org. Lett. 2005, 7, 1441. (g) Sisson, A. L.; Clare, J. P.; Davis, A. P. Chem.
Commun. 2005, 42, 5263. (h) Kim, K. S.; Kim, H.-S. Tetrahedron 2005,
61, 12366. (i) Khatri, V. K.; Upreti, S.; Pandey, P. S. Org. Lett. 2006, 8,
1755. (j) Chahar, M.; Upreti, S.; Pandey, P. S. Tetrahedron 2007, 63, 171.
The anion binding property of 5a-(PF6)2, 5b-(PF6)2, and
1
7-(PF6)2 was studied by monitoring the H NMR spectral
changes caused by the addition of tetrabutylammonium salts
of the anions to a CDCl3 solution containing the receptors.
Upon addition of Bu4NX (X ) F, Cl, Br, I, CH3COO, H2-
PO4) to receptors, significant downfield shifts (δ 1.3-0.9
ppm) were observed for the C(5)-H proton of each triazolium
moiety suggesting the complexation of the anion with
triazolium C(5)-protons by forming C-H‚‚‚X- hydrogen
bonds. In addition, significant downfield shifts were also
(10) Srinivasan, M.; Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G. J.
Org. Chem. 2001, 66, 4299.
166
Org. Lett., Vol. 10, No. 2, 2008