Dalton Transactions
Communication
with those already reported for other U(IV) and U(V)
Notes and references
fluorides.3,32 The existence of UF5 seems to be counterintui-
−
tive due to the very large size of the U(IV) cation, which is used
to adopt coordination numbers greater than or equal to 6.
However, it has to be noted that penta-coordinated uranium
was already mentioned in different complexes.33,34 The stabi-
1 C. R. Edwards and A. J. Oliver, JOM, 2000, 52, 12–20.
2 B. Morel and B. Duperret, J. Fluorine Chem., 2009, 130, 7–10.
3 K. S. Pedersen, K. R. Meihaus, A. Rogalev, F. Wilhelm,
D. Aravena, M. Amoza, E. Ruiz, J. R. Long, J. Bendix and
R. Clerac, Angew. Chem., Int. Ed., 2019, 58, 15650–15654.
4 R. J. Francis, P. S. Halasyamani, J. S. Bee and D. O’Hare,
J. Am. Chem. Soc., 1999, 121, 1609–1610.
5 Y. L. Lai, R. K. Chiang, K. H. Lii and S. L. Wang, Chem.
Mater., 2008, 20, 523–530.
6 K. E. Knope and L. Soderholm, Chem. Rev., 2013, 113, 944–994.
7 A. M. Casella, R. D. Scheele and B. K. McNamara, AIP Adv.,
2015, 5, 127230.
8 B. McNamara, R. Scheele, A. Kozelisky and M. Edwards,
J. Nucl. Mater., 2009, 394, 166–173.
9 J. B. S. Neto, E. F. U. de Carvalho, R. H. L. Garcia,
A. M. Saliba-Silva, H. G. Riella and M. Durazzo, Nucl. Eng.
Technol., 2017, 49, 1711–1716.
10 B. Claux, O. Benes, E. Capelli, P. Soucek and R. Meier,
J. Fluorine Chem., 2016, 183, 10–13.
11 K. Takao, T. J. Bell and Y. Ikeda, Inorg. Chem., 2013, 52,
3459–3472.
−
lization of UF5 in [Bmim][PF6] can be explained by the very
low concentration of this species and H2O, limiting the hydro-
lysis and/or the condensation of the inorganic anion.
Furthermore, an effect from the IL cannot be ruled out.
As mentioned above, the appearance of UF5− is correlated to
the crystallization of UF4. This phenomena can be interpreted
as the slow dissolution of UF4 in the IL, according to eqn (3)
ꢀ
UF4 þ Fꢀ ! UF5
ð3Þ
In conclusion, we have demonstrated for the first time the
direct conversion of UO2 to UF4 under ionothermal reaction
conditions. The chemical mechanism is based on a one pot
reaction process in which a fluorinated ionic liquid plays the
dual role of solvent and fluoride source. 19F and 31P NMR ana-
lyses indicate that the catalytic mechanism of fluorination
−
starts from the hydrolysis of the PF6 anions and generates
HF, which is immediately consumed for the fluorination of
−
12 X. Q. Sun, H. M. Luo and S. Dai, Chem. Rev., 2012, 112,
2100–2128.
13 A.-V. Mudring and S. Tang, Eur. J. Inorg. Chem., 2010, 2569–
2581.
uranium. The decomposition of PF6 in the presence of water
and the metallic cation is also accompanied by the production
of PO2F2−. H2O appears as the driving force of the conversion
−
of UO2 to UF4, since the hydrolysis of PF6 requires water
14 K. Binnemans, Chem. Rev., 2007, 107, 2592–2614.
15 C. J. Rao, K. A. Venkatesan, K. Nagarajan and
T. G. Srinivasan, Radiochim. Acta, 2008, 96, 403–409.
16 I. Billard, C. Gaillard and C. Hennig, Dalton Trans., 2007,
4214–4221.
molecules produced by the reaction between HF and UO2. The
initial hydrolysis of PF6 is permitted by the traces of water in
the initial IL. EXAFS/XANES and XPS spectroscopy analyses
indicate that the precipitation of UF4 is followed by its slow
dissolution as the UF5− anion.
−
17 C. A. Zarzana, G. S. Groenewold, M. T. Benson,
J. E. Delmore, T. Tsuda and R. Hagiwara, J. Am. Soc. Mass
Spectrom., 2018, 29, 1963–1970.
18 A. B. Pereiro, J. M. M. Araujo, S. Martinho, F. Alves, S. Nunes,
A. Matias, C. M. M. Duarte, L. P. N. Rebelo and
I. M. Marrucho, ACS Sustainable Chem. Eng., 2013, 1, 427–439.
19 J. Olchowka, M. Suta and C. Wickleder, Chem. – Eur. J.,
2017, 23, 12092–12095.
This new approach for the synthesis of UF4 is considered as
an interesting and very safe alternative for the usual industrial
process requiring high temperature and a large amount of HF.
Furthermore, it opens up new methods for the stabilization and
the synthesis of molecular U(IV)-fluorides, which can serve as a
building unit for the production of new fluorinated materials.
20 J. S. Xu and Y. J. Zhu, CrystEngComm, 2012, 14, 2630–2634.
21 D. S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin and
A. Gedanken, Chem. Mater., 2006, 18, 3162–3168.
22 C. L. Li, L. Gu, S. Tsukimoto, P. A. van Aken and J. Maier,
Adv. Mater., 2010, 22, 3650–3654.
Conflicts of interest
There are no conflicts to declare.
23 C. Zhang, J. Chen, Y. C. Zhou and D. Q. Li, J. Phys. Chem.
C, 2008, 112, 10083–10088.
Acknowledgements
The authors would like to thank Nora Djelal, Laurence Burylo 24 D. S. Zhang, T. T. Yan, H. R. Li and L. Y. Shi, Microporous
and Philippe Devaux for their technical assistance with the Mesoporous Mater., 2011, 141, 110–118.
SEM image and powder XRD analysis. The Institut 25 S. I. Nikitenko, C. Berthon and P. Moisy, C. R. Chim., 2007,
Universitaire de France (IUF), Chevreul Institute (FR2638), 10, 1122–1127.
Fonds Européen de Développement Régional(FEDER), CNRS, 26 I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. L. Qiu,
Région Nord Pas-de-Calais and Ministère de l’Education
Nationale de l’Enseignement Supérieur et de la Recherche are
K. R. J. Lovelock, R. G. Jones and P. Licence, Phys. Chem.
Chem. Phys., 2011, 13, 2797–2808.
acknowledged for funding this work. Dr F. Joly also thanks 27 E. Thibaut, J. P. Boutique, J. J. Verbist, J. C. Levet and
University of Lille and ORANO for his PhD fellowship.
H. Noel, J. Am. Chem. Soc., 1982, 104, 5266–5273.
This journal is © The Royal Society of Chemistry 2020
Dalton Trans., 2020, 49, 274–278 | 277