Asymmetric Addition of Alkylzinc Reagents to Ketones
less attention. Recent studies, however, have resulted in
the development of a variety of catalysts for these
important processes.
Despite significant activity in asymmetric carbonyl
addition reactions, a long-standing problem in organic
synthesis had been the absence of efficient and highly
enantioselective methods to prepare tertiary alcohols.
ketones (eq 2). Although certain substrates underwent
addition with enantioselectivities as high as 89%, most
substrates gave only moderate to low enantioselectivities.
The most significant drawback to this system, however,
was not the low enantioselectivity but the poor catalyst
turnover frequency. At 20 mol % catalyst loading, the
reactions required between 4 and 14 days to reach
completion.4
Although several examples involving organolithium and
Grignard reagents have been reported,6,30-34 these usu-
ally require greater than stoichiometric amounts of chiral
ligands. In addition, the high reactivity of these reagents
precludes the presence of many functional groups and,
therefore, reduces the attractiveness of such strongly
basic reagents. In contrast, organozinc reagents are mild
and exhibit excellent functional group compatibility,35
making them ideal for use in the synthesis of complex,
highly functionalized targets. Organotitanium reagents
and, to a lesser degree, organoaluminum complexes are
also tolerant of functional groups and have been applied
to the asymmetric addition to aldehydes.36-42
6,47
The first examples of the asymmetric addition of
organozinc reagents to ketones43,44 were reported from
4
5
two groups in 1998. Dosa and Fu employed Noyori’s
5
DAIB ligand in the asymmetric addition of diphenylzinc
to ketones (eq 1). Enantioselectivities as high as 91%
were realized with up to 91% yield. Catalysts derived
from amino alcohols such as DAIB will promote the
addition of the more reactive diphenylzinc to ketones, but
not dialkylzinc reagents, because of their reduced reac-
tivity.
We have been actively investigating the mechanisms
of titanium-catalyzed asymmetric additions of alkyl
groups to aldehydes for several years.4
8-53
The results of
these works enabled us to develop the first practical and
highly enantioselective catalyst for the asymmetric ad-
Also in 1998 Ramon and Yus,46,47 reported the first
example of asymmetric addition of alkyl groups to
dition of alkyl,4
4,54,55
phenyl,
56,57
and vinyl groups to
58
ketones. The enantioenriched tertiary alcohol products
of this reaction are useful chiral building blocks and have
been used in natural product synthesis.59 A shortcoming
associated with the use of dialkylzinc reagents, however,
is that very few are commercially available. Furthermore,
like most main-group organometallics, dialkylzinc re-
agents are sensitive to air and moisture. To circumvent
the limited availability of organozinc reagents, Knochel
and co-workers have developed several excellent methods
(
25) Boyall, D.; L o´ pez, F.; Sasaki, H.; Frantz, D.; Carreira, E. M.
Org. Lett. 2000, 2, 4233-4236.
26) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4, 4143-
(
4
146.
(
27) Xu, M. H.; Pu, L. Org. Lett. 2002, 4, 4555-4557.
28) Xu, Z.; Wang, R.; Xu, J.; Da, C.-S.; Yan, W.-J.; Chen, C. Angew.
(
Chem., Int. Ed. 2003, 42, 5747-5749.
(
29) Lu, G.; Li, X.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2003, 42, 5057-5058.
30) Seebach, D.; Dorr, H.; Bastani, B.; Ehrig, V. Angew. Chem., Int.
Ed. 1969, 8, 982-983.
31) Inch, T. D.; Lewis, G. J.; Sainsbury, G. L.; Sellers, D. J.
Tetrahedron Lett. 1969, 41, 3657-3660.
(
to prepare dialkylzinc compounds bearing various func-
(
tional groups.3
9,60-62
These reagents can be synthesized
(
32) Nozaki, H.; Aratani, T.; Toraya, T.; Noyori, R. Tetrahedron
971, 27, 905-913.
33) Weber, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1992, 31,
1
(
(48) Balsells, J.; Walsh, P. J. J. Am. Chem. Soc. 2000, 122, 1802-
8
4-86.
1803.
(
(
34) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 6117-6128.
35) Erdik, E. Organozinc Reagents in Organic Synthesis; CRC
(49) Pritchett, S.; Woodmansee, D. H.; Gantzel, P.; Walsh, P. J. J.
Am. Chem. Soc. 1998, 120, 6423-6424.
Press: Boca Raton, 1996.
(50) Balsells, J.; Betancort, J. M.; Walsh, P. J. Angew. Chem., Int.
Ed. 2000, 39, 3428-3430.
(
36) Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.;
Ohno, M. Tetrahedron Lett. 1989, 30, 7095-7098.
37) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Koba-
yashi, S. Tetrahedron 1992, 48, 5691-5700.
38) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed.
001, 40, 92-138.
39) Knochel, P.; Vettel, S.; Eisenberg, C. Appl. Organomet. Chem.
995, 9, 175-188.
40) Chan, A. S. C.; Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. 1997,
19, 4080-4081.
41) Lu, J.-F.; You, J.-S.; Gau, H.-M. Tetrahedron: Asymmetry 2000,
1, 2531-2535.
42) Abbott, D. E.; You, J.-S.; Hsieh, S.-H.; Gau, H.-M. J. Chem. Soc.,
Chem. Commun. 2001, 1546-1547.
(51) Balsells, J.; Walsh, P. J. J. Am. Chem. Soc. 2000, 122, 3250-
3251.
(
(52) Balsells, J.; Costa, A. M.; Walsh, P. J. Isr. J. Chem. 2001, 41,
251-261.
(
2
1
1
1
(53) Walsh, P. J. Acc. Chem. Res. 2003, 36, 739-749.
(54) Garc ´ı a, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc.
2002, 124, 10970-10971.
(
(
(55) Jeon, S.-J.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125, 9544-
9545.
(
(56) Garc ´ı a, C.; Walsh, P. J. Org. Lett. 2003, 5, 3641-3644.
(57) Li, H.; Garc ´ı a, C.; Walsh, P. J. Proc. Nat. Acad. Sci. 2004, 101,
5425-5427.
(
(58) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538-6539.
(59) Yus, M.; Ram o´ n, D. J.; Prieto, O. Eur. J. Org. Chem. 2003,
2745-2748.
(
43) Ram o´ n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2004, 43, 284-
2
7
87.
(
44) Betancort, J. M.; Garc ´ı a, C.; Walsh, P. J. Synlett 2004, 749-
(60) Rozema, M. J.; Eisenberg, C.; L u¨ tjens, H.; Ostwald, R.; Belyk,
K.; Knochel, P. Tetrahedron Lett. 1993, 34, 3115-3118.
(61) Langer, F.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P.
Synlett 1994, 410-412.
60.
(
(
(
45) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445-446.
46) Ram o´ n, D. J.; Yus, M. Tetrahedron Lett. 1998, 39, 1239-1242.
47) Ram o´ n, D. J.; Yus, M. Tetrahedron 1998, 54, 5651-5666.
(62) Knochel, P. Chemtracts: Org. Chem. 1995, 8, 205-221.
J. Org. Chem, Vol. 70, No. 2, 2005 449