Scheme 1. Chiral Phosphoramide 1-Zn(II) Complex as a
Conjugate Lewis Acid-Lewis Base Catalyst
alcohols in high to excellent yields (Scheme 1). These chiral
Zn(II) catalysts, which are simply prepared in situ, are
derived from an inexpensive natural amino acid (i.e.,
L-valine).
Figure 1. Catalytic enantioselective phenylation to 2a. Condi-
tions: (a) Reactions were examined in 0.25 M heptane unless
otherwise noted. (b) Reactions were examined in 0.5 M heptane.
(c) 1 mol % of 1d was used.
In our preliminary study of catalytic enantioselective
organozinc addition to aldehydes, chiral Zn(II)-BINOLates
bearing phosphoramides at the 3,3′-positions were designed
as highly effective conjugate Lewis acid-Lewis base
equiv) in heptane at room temperature (Figure 1).11 Fortu-
nately, simply designed 1a gave 3a with high enantioselec-
tivity (80% ee), although the yield was low (30%). Chiral
ligand 1b or 1c bearing a pyrrolidinyl or piperidinyl group
8
-10
catalysts.
However, these Zn(II)-BINOLates did not
catalyze the reaction of ketones and organozinc reagents, and
a significant amount of the aldol products was obtained
instead of the desired products. To develop conjugate Lewis
acid-Lewis base catalysts with ketones, we first investigated
the L-valine-derived chiral phosphoramide ligand (1, 10 mol
2
instead of a NMe group in 1a showed improved catalytic
activity, but the enantioselectivitiy was the same or de-
creased. However, 1d bearing a P-(1-naphthyl) moiety
showed a considerable improvement in both yield and
enantioselectivity (up to 95% ee). After optimization, 3a was
obtained in 98% yield with 92% ee by using 1 mol % of 1d.
%) in the catalytic enantioselective phenylation of 4′-
chloroacetophenone (2a) with Ph Zn (1 equiv) and Et Zn (2
2
2
We next examined the generality of this catalysis for other
ketones (Figure 2). For aryl ketones with either an electron-
withdrawing or electron-donating group (2a-c and 2g),
cyclic ketones (2d-f), heteroaryl ketones (2h and 2i), and
R,â-unsaturated ketone (2j) with 10 mol % of (S)-1d, high
enantioselectivities (91-98% ee) and high yields (up to 98%)
were observed in products 3a-j. Moreover, aliphatic ketones
(2k and 2l) also provided the corresponding tertiary alcohols
(
6) (a) Hui, A.; Zhang, J.; Fan, J.; Wang, Z. Tetrahedron: Asymmetry
2
006, 17, 2101-2107. (b) Jeon, S.-J.; Li, H.; Garc ´ı a, C.; LaRochelle, L.
K.; Walsh, P. J. J. Org. Chem. 2005, 70, 448-455. (c) Jeon, S.-J.; Li, H.;
Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 16416-16425. (d) Forrat, V. J.;
Pieto, O.; Ram o´ n, D. J.; Yus, M. Chem. Eur. J. 2006, 12, 4431-4445.
(
7) Shibasaki’s pioneering work of bifunctional nonconjugate acid-base
chemistry. See reviews: (a) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002,
02, 2187-2209. (b) Shibasaki, M.; Kanai, M.; Funabashi, K. Chem.
1
Commun. 2002, 1989-1999. (c) Kanai, M.; Kato, N.; Ichikawa, E.;
Shibasaki, M. Synlett 2005, 1491-1508. (d) Kanai, M.; Kato, N.; Ichikawa,
E.; Shibasaki, M. Pure Appl. Chem. 2005, 77, 2047-2052. (e) Shibasaki,
M.; Matsunaga, S. Chem. Soc. ReV. 2006, 35, 269-279. In particular, with
PdO moieties: (f) Hamashima, Y.; Sawada, D.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 1999, 121, 2641-2642. (g) Takamura, M.; Hamashima,
Y.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2000, 39,
(3k and 3l) with 80-82% ee in high yields. In particular, a
1
-g-scale (5 mmol) preparation of (R)-3a was established in
91% yield with 93% ee by using 3 mol % of (R)-1d in
heptane at room temperature for 24 h, which is the key
intermediate in the synthesis of the antihistamine drug
1
650-1652. (h) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2000, 122, 6327-6328. (i) Hamashima, Y.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 7412-7413. (j) Funabashi,
K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123,
12
clemastine (4) (Scheme 2).
1
0784-10785.
Encouraged by the efficient phenylation to ketones, we
(
8) (a) Hatano, M.; Miyamoto, T.; Ishihara, K. AdV. Synth. Catal. 2005,
next examined ethylation with Et
the reaction of aryl and heteroaryl ketones with 3 equiv of
Et Zn proceeded smoothly at room temperature for 16-24
2
Zn (Figure 3). As expected,
3
1
7
47, 1561-1568. (b) Hatano, M.; Miyamoto, T.; Ishihara, K. Synlett 2006,
762-1764. (c) Hatano, M.; Miyamoto, T.; Ishihara, K. J. Org. Chem. 2006,
1, 6474-6484. For our account, see: (d) Ishihara, K.; Sakakura, A.;
Hatano, M. Synlett 2007, 686-703.
(
2
9) Precedent chiral phosphoramide ligands in Et2Zn addition to alde-
hydes: (a) Soai, K.; Hirose, Y.; Ohno, Y. Tetrahedron: Asymmetry 1993,
(11) Pionnering work of phenylation to aldehydes with Ph2Zn/Et2Zn
4
, 1473-1474. (b) Hulst, R.; Heres, H.; Fitzpatrick, K.; Peter, N. C. M.
systems: Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Mu n˜ iz, K. Angew.
Chem., Int. Ed. 2000, 39, 3465-3467. Also see: (a) Bolm, C.; Hildebrand,
J. P.; Mu n˜ iz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284-
3308. (b) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm. C. Chem. Soc.
ReV. 2006, 35, 454-470.
(12) (a) Ebn o¨ ther, A.; Weber, H.-P. HelV. Chim. Acta 1976, 59, 2462-
2468. (b) Nikiforov, T.; Stanchev, S.; Milenkov, B.; Dimitrov, V. Synth.
Commun. 1990, 20, 1977-1981.
W.; Kellogg, R. M. Tetrahedron: Asymmetry 1996, 7, 2755-2760. (c)
Brunel, J.-M.; Constantieux, T.; Legrand, O.; Buono, G. Tetrahedron Lett.
1
1
998, 39, 2961-2964. (d) Shi, M.; Sui, W.-S. Tetrahedron: Asymmetry
999, 10, 3319-3325.
(
10) Chiral phosphine oxides in asymmetric catalysis, for reviews see:
(
a) Brunel, J. M.; Buono, G. Top. Curr. Chem. 2002, 79-105. (b) Molt,
O.; Schrader, T. Synthesis 2002, 2633-2670.
4536
Org. Lett., Vol. 9, No. 22, 2007