Published on Web 12/21/2007
Complexation-Induced Transition of Nanorod to Network
Aggregates: Alternate Porphyrin and Cyclodextrin Arrays
Yu Liu,* Chen-Feng Ke, Heng-Yi Zhang, Jie Cui, and Fei Ding
Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry,
Nankai UniVersity, Tianjin, 300071, P. R. China
Abstract: Tetrakis(permethyl-â-cyclodextrin)-modified zinc(II) porphyrin (1) and tetra(â-cyclodextrin)-modified
zinc(II) porphyrin (2) were synthesized via “click chemistry”. Intermolecular inclusion complexation of these
structurally similar 1 and 2 with tetrasodium tetraphenylporphyrintetrasulfonate (3) led to formation of two
distinctly different nanoarchitectures with alternate porphyrin and cyclodextrin arrays, which were proven
to be network and nanorod aggregates, respectively, by using transmission electron microscopy, atomic
force microscopy, and scanning electron microscopy. From the results of comparative studies in different
solutions, we elucidated the mechanisms that result in nanorod to network aggregates transition, concluding
that the complexation strength of porphyrin with cyclodextrin is a crucial factor to activate the potential
binding sites of a molecular building block.
Introduction
(CDs) becomes an important topic for designing functional
6,7
supramolecular assemblies, and the binding behavior, enzyme
mimics, and energy/electron transfer abilities of porphyrin-CD
Self-assembly processes are ubiquitous in chemistry, materials
science, and biology. The morphology of the assembly is usually
determined by the structure of the individual components.
8
conjugates have been investigated. Herein, we report the
1
construction of two supramolecular nanoarchitectures whose
aggregation patterns are controlled by selectively activating the
potential binding sites of the molecular building blocks. Using
transmission electron microscopy (TEM), atomic force micros-
copy (AFM), and scanning electron microscopy (SEM), we will
show that the constructed nanorods or network aggregates are
formed by the noncovalent interactions of meso-tetraphenylpor-
phyrin-4,4′,4′′,4′′′-tetrasulfonic acid tetrasodium salt (3) with
porphyrin-â-CD or porphyrin-permethyl-â-CD conjugates, and
also that the morphology switching is controlled in a predictable
fashion by the complexation strength of porphyrins with CDs.
Therefore, the design of molecular building blocks and binding
motif that organize themselves into desired patterns and
functions is the key to the application of self-assembly. On
2
the other hand, a functional molecular building block employed
in supramolecular chemistry usually possesses an invariable
shape with unambiguous functional binding sites, which lead
them to a supramolecular assembly with a fixed pattern. In
biology, stem cells can differentiate to divergent cell types that
make up the organism when the right signals are provided. That
is, stem cells have the potential to develop into mature cells
that have characteristic shapes and specialized functions. Thus,
the design of functional molecular building blocks which are
similar to stem cells remains challenging.
(6) (a) Dai, X.-H.; Dong, C.-M.; Fa, H.-B.; Yan, D.-Y.; Wei, Y. Biomacro-
molecules 2006, 7, 3527-3533. (b) Kano, K.; Kitagishi, H.; Mabuchi, T.;
Kodera, M.; Hirota, S. Chem. Asian J. 2006, 1, 358-366. (c) Kano, K.;
Nishiyabu, R.; Asada, T.; Kuroda, Y. J. Am. Chem. Soc. 2002, 124, 9937-
Porphyrins have been widely used as functional building
blocks in supramolecular chemistry because of their photo-
9944. (d) Deng, W.; Onji, T.; Yamaguchi, H.; Ikedab, N.; Harada, A. Chem.
Commun. 2006, 4212-4214. (e) Lang, K.; Mosinger, J.; Wagnerov a´ , D.
M. Coord. Chem. ReV. 2004, 248, 321-350. (f) Mulder, A.; Jukovic, A.;
van Leeuwen, F. W. B.; Kooijman, H.; Spek, A. L.; Huskens, J.; Reinhoudt,
D. N. Chem.-Eur. J. 2004, 10, 1114-1123.
3
chemical properties, the ability to be used as donor/accepter
4
5
ability in electron or energy transfer process, and so on. In
particular, the combination of porphyrins and cyclodextrins
(
7) (a) Sasaki, K.; Nakagawa, H.; Zhang, X.-Y.; Sakurai, S.; Kano, K.; Kuroda,
Y. Chem. Commun. 2004, 408-409. (b) Kano, K.; Kitagishi, H.; Dagallier,
C.; Kodera, M.; Matsuo, T.; Hayashi, T.; Hisaeda, Y.; Hirota, S. Inorg.
Chem. 2006, 45, 4448-4460. (c) Kano, K.; Kitagishi, H.; Tamura, S.;
Yamada, A. J. Am. Chem. Soc. 2004, 126, 15202-15210. (d) Venema, F.;
Rowan, A. E.; Nolte, R. J. M. J. Am. Chem. Soc. 1996, 118, 257-258. (e)
Kano, K.; Ishida, Y. Angew. Chem., Int. Ed. 2007, 46, 727-730. (f) Kano,
K.; Kitagishi, H.; Kodera, M.; Hirota, S. Angew. Chem., Int. Ed. 2005, 44,
435-438.
(
1) Whitesides, G. M.; Simanek, E. E.; Gorman, C. B. In Chemical Synthesis:
Gnosis to Prognosis; Chatgilialoglu, C., Snieckus, V., Eds.; NATO
Advanced Study Institute Series 320; Kluwer: Dordrecht, The Netherlands,
1
996; pp 565-588.
(
2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421.
(
3) (a) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1995, 117,
7
04-714. (b) Sugou, K.; Sasaki, K.; Kitajima, K.; Iwaki, T.; Kuroda, Y.
(8) (a) Kuroda, Y.; Hiroshige, T.; Sera, T.; Shiroiwa, Y.; Tanaka, H.; Ogoshi,
H. J. Am. Chem. Soc. 1989, 111, 1912-1913. (b) Kuroda, Y.; Ito, M.;
Sera, T.; Ogoshi, H. J. Am. Chem. Soc. 1993, 115, 7003-7004. (c) Kano,
K.; Nishiyabu, R.; Yamazaki, T.; Yamazaki, I. J. Am. Chem. Soc. 2003,
125, 10625-10634. (d) Breslow, R.; Zhang, X.; Xu, R.; Maletic, M.;
Merger, R. J. Am. Chem. Soc. 1996, 118, 11678-11679. (e) Breslow, R.;
Zhang, X.; Huang, Y. J. Am. Chem. Soc. 1997, 119, 4535-4536. (f)
Carofiglio, T.; Fornasier, R.; Lucchini, V.; Simonato, L.; Tonellato, U. J.
Org. Chem. 2000, 65, 9013-9021. (g) Leng, X.-B.; Choi, C.-F.; Lo, P.-
C.; Ng, D. K. P. Org. Lett. 2007, 9, 231-234.
J. Am. Chem. Soc. 2002, 124, 1182-1183.
(
4) (a) Haycock, R. A.; Yartsev, A.; Michelsen, U.; Sundstr o¨ m, V.; Hunter,
C. A. Angew. Chem., Int. Ed. 2000, 39, 3616-3619. (b) Choi, M.-S.; Aida,
T.; Yamazaki, T.; Yamazaki, I. Chem.-Eur. J. 2002, 8, 2667-2678. (c)
Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1993, 115,
7
519-7520.
(
5) (a) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int.
Ed. 2004, 43, 150-158. (b) Alessio, E.; Iengo, E.; Marzilli, L. G. Supramol.
Chem. 2002, 14, 103-120.
600
9
J. AM. CHEM. SOC. 2008, 130, 600-605
10.1021/ja075981v CCC: $40.75 © 2008 American Chemical Society