RESEARCH
| REPORT
coupling for enhancing site selectivity of organic
and inorganic chemical reactions. More reactions
must be studied to evaluate the generality of this
phenomenon and to see to what extent the se-
lectivity can be enhanced at a given site. As more
and more studies show, this weak-field room-
temperature method has the potential to become
an everyday tool for chemists to physically con-
trol chemical reactivity without catalysts, pre-
functionalization, or chemical changes to the
reaction conditions.
REFERENCES AND NOTES
1
2
.
.
R. T. Hall, G. C. Pimentel, J. Chem. Phys. 38, 1889–1897 (1963).
Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies,
C. V. Shank, Science 266, 422–424 (1994).
Fig. 4. Eyring plots showing the reaction rate for the formation of products as a function of
temperature between 20° and 35°C. (A) Formation of product 1. (B) Formation of product 2.
Reactions inside the cavities tuned to be on-resonance with Si–C (red squares) or Si–O (orange
triangles) stretching modes are compared with reactions outside the cavity (blue spheres).
The data were fitted with a least-square method, and the quality of the fit can be assessed from
3. M. Delor et al., Science 346, 1492–1495 (2014).
H. Frei, L. Fredin, G. C. Pimentel, J. Chem. Phys. 74, 397–411
1981).
A. Sinha, M. C. Hsiao, F. F. Crim, J. Chem. Phys. 94,
928–4935 (1991).
4
.
(
5.
4
6. R. N. Zare, Science 279, 1875–1879 (1998).
7. F. F. Crim, Acc. Chem. Res. 32, 877–884 (1999).
2
coefficient of determination (R ) values ≥0.95.
8
.
S. Yan, Y.-T. Wu, B. Zhang, X.-F. Yue, K. Liu, Science 316,
723–1726 (2007).
D. R. Killelea, V. L. Campbell, N. S. Shuman, A. L. Utz, Science
19, 790–793 (2008).
0. W. Zhang, H. Kawamata, K. Liu, Science 325, 303–306 (2009).
1
9.
3
Table 1. Enthalpy and entropy of activation under strong coupling.
1
1
1
1
1. J. C. Polanyi, Acc. Chem. Res. 5, 161–168 (1972).
2. K. Liu, Annu. Rev. Phys. Chem. 67, 91–111 (2016).
3. A. Shalabney et al., Nat. Commun. 6, 5981 (2015).
‡
‡
DH
DS
Products
Experiment
(
kJ mol−
1
)
(J mol−1 K−1
)
14. J. P. Long, B. S. Simpkins, ACS Photonics 2, 130–136 (2015).
5. J. George et al., Phys. Rev. Lett. 117, 153601 (2016).
1
Product 1
Outside cavity
34 ± 3
60 ± 2
–173 ± 11
–95 ± 7
16. R. M. A. Vergauwe et al., J. Phys. Chem. Lett. 7, 4159–4164
(2016).
.
.
.
....................................................................................................................................................................................................................
On-resonance Si–C
....................................................................................................................................................................................................................
17. J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux,
On-resonance Si–O
57 ± 5
–106 ± 17
....................................................................................................................................................................................................................
T. W. Ebbesen, Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
18. A. Thomas et al., Angew. Chem. Int. Ed. 55, 11462–11466
(2016).
Product 2
Outside cavity
23 ± 3
85 ± 5
–214 ± 8
–6 ± 17
.
.
.
....................................................................................................................................................................................................................
On-resonance Si–C
....................................................................................................................................................................................................................
19. R. J. Rahaim Jr., J. T. Shaw, J. Org. Chem. 73, 2912–2915 (2008).
On-resonance Si–O
76 ± 7
–39 ± 24
....................................................................................................................................................................................................................
2
2
2
2
0. S. V. Shelke et al., Angew. Chem. Int. Ed. 49, 5721–5725 (2010).
1. T. W. Ebbesen, Acc. Chem. Res. 49, 2403–2412 (2016).
2. E. Orgiu et al., Nat. Mater. 14, 1123–1129 (2015).
3. X. Zhong et al., Angew. Chem. Int. Ed. 56, 9034–9038
‡
(
2017).
and DS , in such a way that it tilts the landscape
from one product to another. An interesting
aspect of chemical reactions under VSC so far
has been the high activation barrier seen toward
the breaking of Si–C and Si–O bonds. Because a
typical fluoride-induced silyl cleavage is known
to proceed through an associative mechanism
involving a pentacoordinate intermediate (39), a
ground state (18) or via the excited state under
electronic strong coupling, such as in the photo-
isomerization reaction of merocyanine (17). For
the latter case, recent theoretical studies show
that the collective response of molecules plays
a role in widening the barrier at the conical inter-
section, preventing the isomerization (31, 32).
However, such findings cannot yet be generalized;
a recent study of hydrolysis reactions under VSC
24. C. Gonzalez-Ballestero, J. Feist, E. Moreno, F. J. Garcia-Vidal,
Phys. Rev. B 92, 121402 (2015).
25. K. Stranius, M. Hertzog, K. Börjesson, Nat. Commun. 9, 2273
(2018).
26. S. Wang et al., J. Phys. Chem. Lett. 5, 1433–1439 (2014).
27. S. Gambino et al., ACS Photonics 1, 1042–1048 (2014).
28. W. Ahn, I. Vurgaftman, A. D. Dunkelberger, J. C. Owrutsky,
B. S. Simpkins, ACS Photonics 5, 158–166 (2018).
29. M. Hertzog et al., Chemistry 23, 18166–18170 (2017).
‡
3
0. O. Kapon, R. Yitzhari, A. Palatnik, Y. R. Tischler, J. Phys. Chem.
C 121, 18845–18853 (2017).
strained transition state with large negative DS
is expected as observed outside the cavity. The
observed sharp decrease of DS to a lower value
under VSC implies that the transition state is
strongly modified, particularly the one leading to
product 2. The high activation energy and the
4
shows large rate accelerations (up to 10 ) (44).
3
1. J. Galego, F. J. Garcia-Vidal, J. Feist, Nat. Commun. 7, 13841
‡
More experimental and theoretical studies are
required to be able to extract general features
and understand the effects of VSC on different
types of reactions.
(
2016).
32. J. Galego, F. J. Garcia-Vidal, J. Feist, Phys. Rev. Lett. 119,
36001 (2017).
3. V. F. Crum, S. R. Casey, J. R. Sparks, Phys. Chem. Chem. Phys.
0, 850–857 (2018).
1
3
3
3
2
‡
less negative DS clearly indicate that the reac-
This proof-of-principle study shows that it is
possible to control reaction selectivity through
VSC. Strong coupling is dependent on the orienta-
tion of the transition dipole moment relative to
the electric field of the cavity mode. The molecules
were randomly oriented, and the electric field was
not uniform in the cavity; there were nodes where
the field was essentially null. Hence, the fivefold
increase in selectivity under VSC reported here
is probably much larger if corrected for such fea-
tures. For instance, experiments could be done
in a tubular cavity to ensure a larger fraction of
coupled molecules. Therefore, the selectivity dis-
played by VSC in the current experiment shows
the remarkable potential of light-matter strong
4. G. G. Rozenman, K. Akulov, A. Golombek, T. Schwartz,
ACS Photonics 5, 105–110 (2018).
5. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz,
T. Shegai, ACS Photonics 5, 24–42 (2018).
tion switched to a dissociative mechanism under
VSC and also suggest that the transition state is
product-like, as in the case of late barrier reac-
tions. One potential explanation for the apparent
change in mechanism is that VSC suppresses
typical associative pathways for Si–C and Si–O
bond cleavage, allowing otherwise slower dis-
sociative pathways to dominate. The stronger
change under VSC for the dissociative pathway
leading to 2 compared with that leading to 1 could
therefore be rationalized because the former in-
volves a better leaving group.
3
3
6. F. Herrera, F. C. Spano, Phys. Rev. Lett. 116, 238301 (2016).
7. L. A. Martínez-Martínez, R. F. Ribeiro, J. Campos-González-Angulo,
J. Yuen-Zhou, ACS Photonics 5, 167–176 (2018).
3
3
8. J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, A. Rubio,
ACS Photonics 5, 992–1005 (2018).
9. A. R. Bassindale, P. G. Taylor, in Organic Silicon Compounds
(Wiley-Blackwell, 2004), ch.13, pp. 839–892.
40. A. M. DiLauro, W. Seo, S. T. Phillips, J. Org. Chem. 76,
7352–7358 (2011).
4
1. G. C. Schatz, M. C. Colton, J. L. Grant, J. Phys. Chem. 88,
971–2977 (1984).
2
4
4
2. A. Grill, D. A. Neumayer, J. Appl. Phys. 94, 6697–6707 (2003).
3. P. M. F. M. Bastiaansen, R. V. A. Orru, J. B. P. A. Wijnberg,
A. de Groot, J. Org. Chem. 60, 6154–6158 (1995).
Barrier increases have also been seen in
earlier experiments, whether occurring in the
Thomas et al., Science 363, 615–619 (2019)
8 February 2019
4 of 5