10.1002/cssc.201903180
ChemSusChem
COMMUNICATION
[2] a) P. C. A. B. J. Zakzeski, A. L. Jongerius and B. M. Weckhuysen, Chem.
Rev. 2010, 110, 3552-3599; b) R. A. D. A. C. Xu, J. Labidi and R. Luque,
according to previous report with phenol and 2-bromoacetophenone as the
starting materials.[4h]
Chem.
Soc.
Rev.
2014,
43,
7485-7500;
c)
[3] a) H. Nimz, Angew. Chem. Int. Ed. 1974, 13, 313-321; b) J. J. R. W. Boerjan,
M. Baucher, , Annu. Rev. Plant Biol. 2003, 54, 519-546.
Oxidative cleavage of LMC (1).LMC (1) (107 mg, 0.5 mmol), formic
acid (2 mL), H2O2 (0.5 mL), and H2SO4 (concentrated (98%), 30 µL) were
charged into a thick wall glass vial (8 mL). The vial was sealed and stirred
at room temperature (25 °C) for 4 h. The sample containing known amount
of mesitylene as an internal standard was analysed by Agilent GC6890N
with FID and capillary column (HP FFAP, 30 m × 0.32 mm, 0.25 µm).
Isolation of the intermediate product (2). LMC (1) (424 mg, 2 mmol),
formic acid (8 mL), and H2O2 (2 mL) were charged into a thick wall glass
vial (16 mL). The vial was sealed and stirred at room temperature (25 °C)
for 4 h. After that, 20 mL of water was added. The products were extracted
with 20 mL of Et2O. A light yellow liquid was obtained after Et2O was
removed by evaporation. Phenoxymethyl benzoate (the intermediate) was
separated at 50% yield by flush column with hexane/ethyl acetate = 32/1
(v/v) as the mobile phase.
[4] a) S. R. Collinson and W. Thielemans, Coord. Chem. Rev. 2010, 254, 1854-
1870; b) C. Crestini, M. Crucianelli, M. Orlandi and R. Saladino, Catal.
Today 2010, 156, 8-22; c) H. Lange, S. Decina and C. Crestini, Eur. Polym.
J. 2013, 49, 1151-1173; d) R. Ma, Y. Xu and X. Zhang, ChemSusChem
2015, 8, 24-51; e) R. Ma, M. Guo and X. Zhang, Catal. Today 2018, 302,
50-60; f) T. Vangeel, W. Schutyser, T. Renders and B. F. Sels, Top Curr.
Chem. (Cham) 2018, 376, 30; g) C. Cheng, J. Wang, D. Shen, J. Xue, S.
Guan, S. Gu and K. Luo, Polym. Polym. Compos. 2017, 9, 240-266; h) Y.
Y. Ma, Z. T. Du, J. X. Liu, F. Xia and J. Xu, Green Chem. 2015, 17, 4968-
4973.
[5] a) K. B.-A. Isabelle Artaud, and Daniel Mansuy, J. Org. Chem. 1993, 58,
3373-3380; b) R. L. Sushanta K. Badamali, James H. Clark, Simon W.
Breeden, Catal. Commun. 2009, 10, 1010-1013; c) C. Crestini, P. Pro, V.
Neri and R. Saladino, Biorg. Med. Chem. 2005, 13, 2569-2578; d) A. Kumar,
N. Jain and S. M. S. Chauhan, Synlett. 2007, 2007, 0411-0414.
[6] a) J. Pan, J. Fu and X. Lu, Energy Fuels 2015, 29, 4503-4509; b) E. B.
Clatworthy, J. L. Picone-Murray, A. K. L. Yuen, R. T. Maschmeyer, A. F.
Masters and T. Maschmeyer, Catal. Sci. Technol. 2019, 9, 384-397; c) R.
Ma, M. Guo and X. Zhang, ChemSusChem 2014, 7, 412-415.
[7] a) M. Shilpy, M. A. Ehsan, T. H. Ali, S. B. Abd Hamid and M. E. Ali, RSC Adv.
2015, 5, 79644-79653; b) Y.-Y. Lin and S.-Y. Lu, J. Taiwan Inst. Chem. Eng.
2019, 97, 264-271.
Acknowledgements
[8] a) Y. Wang, Q. Wang, J. He and Y. Zhang, Green Chem. 2017, 19, 3135-
3141; b) B. Sedai and R. T. Baker, Adv. Synth. Catal. 2014, 356, 3563-
3574.
This work was supported by the Institute of Bioengineering and
Nanotechnology (Biomedical Research Council, Agency for
Science, Technology and Research (A*STAR), Singapore).
[9] a) A. Rahimi, A. Ulbrich, J. J. Coon and S. S. Stahl, Nature 2014, 515, 249-
252; b) R. Zhu, B. Wang, M. S. Cui, J. Deng, X. L. Li, Y. B. Ma and Y. Fu,
Green Chem. 2016, 18, 2029-2036; c) Y. Cao, N. Wang, X. He, H. R. Li
and L. N. He, ACS Sustain. Chem. Eng. 2018, 6, 15032-15039; d) N. C.
Luo, M. Wang, H. J. Li, J. Zhang, H. F. Liu and F. Wang, ACS Catal. 2016,
6, 7716-7721; e) C. F. Zhang, H. J. Li, J. M. Lu, X. C. Zhang, K. E.
MacArthur, M. Heggen and F. Wang, ACS Catal. 2017, 7, 3419-3429; f) M.
Dawange, M. V. Galkin and J. S. M. Samec, Chemcatchem 2015, 7, 401-
404.
Keywords: biomass • oxidation • lignin • formic acid • hydrogen
peroxide
[10] S. Kim, S. C. Chmely, M. R. Nimos, Y. J. Bomble, T. D. Foust, R. S. Paton
and G. T. Beckham, J. Phy. Chem. Lett. 2011, 2, 2846-2852.
[11] a) M. Wang, J. M. Lu, X. C. Zhang, L. H. Li, H. J. Li, N. C. Luo and F. Wang,
ACS Catal. 2016, 6, 6086-6090; b) A. Rahimi, A. Azarpira, H. Kim, J. Ralph
and S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 6415-6418.
[12] S. P. Teong, X. Li and Y. Zhang, Green Chem. 2019, 21, 5753-5780.
[13] X. K. Li, B. Ho, D. S. W. Lim and Y. G. Zhang, Green Chem. 2017, 19, 914-
918.
[1] a) P. N. R. Vennestrom, C. M. Osmundsen, C. H. Christensen and E.
Taarning, Angew. Chem. Int. Ed. 2011, 50, 10502-10509; b) D. M. Alonso,
S. G. Wettstein and J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075-8098;
c) M. Stocker, Angew. Chem. Int. Ed. 2008, 47, 9200-9211; d) E. A.
Tsavkelova and A. I. Netrusov, Appl. Biochem. Micro. 2012, 48, 421-433;
e) X. Tong, Y. Ma and Y. Li, Appl. Catal. A 2010, 385, 1-13; f) J. Van
Haveren, E. L. Scott and J. Sanders, Biofuel. Bioprod. Biorefin. 2008, 2, 41-
57; g) R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H.
J. Heeres and J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597; h) M.
Besson, P. Gallezot and C. Pinel, Chem. Rev. 2014, 114, 1827-1870; i) R.
A. Sheldon, Green Chem. 2014, 16, 950-963; j) N. Yusuf, S. K. Kamarudin
and Z. Yaakub, Energy Convers. Manage. 2011, 52, 2741-2751.
[14] a) M. Krystof, M. Perez-Sanchez and P. D. de Maria, Chemsuschem
2013, 6, 826-830; b) X. D. Li, X. C. Lan and T. F. Wang, Catal. Today
2016, 276, 97-104; c) X. Li, X. Lan and T. Wang, Green Chem. 2016
18, 638-642.
,
This article is protected by copyright. All rights reserved.