14. Hickner, R. C.; Ekelund, U.; Mellander, S.; Ungerstedt, U.;
Henriksson, J . Muscle blood flow in the cat: comparison of
the microdialysis ethanol technique to direct measurement.
J Appl. Physiol. 1995, 79, 638-647.
32. Houston, J . B. Utility of in vitro drug metabolism data in
predicting in vivo metabolic clearance. Biochem. Pharmacol.
1994, 47, 1469-1479.
33. Hayes, K. A.; Brennan, B.; Chenery, R.; Houston, J . B. In
vivo disposition of caffeine predicted from hepatic microsomal
and hepatocyte data. Drug Metab. Disp. 1995, 23, 349-353.
34. Ichikawa, M.; Tsao, S. C.; Lin, Tsu-H.; Miyauchi, S.; Sawada,
Y.; Iga, T.; Hanano, M.; Sugiyama, Y. ‘Albumin-mediated
transport phenomenon’ observed for ligands with high
membrane permeability: Effect of the unstrirred water layer
in the Disse’s space of rat liver. J . Hepatol. 1992, 16, 38-
49.
15. Stenken, J . A.; Lunte, C. E.; Southard, M. Z.; Ståhle, L.
Factors that influence microdialysis recovery. Comparison
of experimental and theoretical microdialysis recoveries in
rat liver. J . Pharm. Sci. 1997, 86, 958-966.
16. Rappaport, A. M. The structural and functional unit in the
human liver (liver acinus). Anat. Rec. 1958, 130, 673-689.
17. Arias, I. M.; J akoby, W. B.; Popper, H.; Schachter, D., Eds.
The Liver: Biology and Pathobiology, 2nd ed.; Raven Press
Ltd.: New York, 1988.
18. Pang, K. S.; St-Pierre, M. V. Hepatic modeling of drugs and
metabolites. In Biliary Excretion of Drugs and Other Chemi-
cals; Progress in Pharmacology and Clinical Pharmacology;
Siegers, C-P, Watkins, J . B., Eds.; Gustav Fischer Verlag:
Stuttgart, 1991; Vol. 8, pp 89-126.
19. Pang, K. S. Kinetics of conjugation reactions in eliminating
organs. In Conjugation Reactions in Drug Metabolism; Mul-
der, G. J ., Ed.; Taylor and Francis: London, 1990; pp 5-39.
20. Gillette, J . R. Kinetic aspects of metabolism and elimination
of foreign compounds in animals. In Enzymatic Basis of
Detoxication; J akoby, W. B., Ed.; Academic Press, Inc.:
Orlando, 1980; Vol. 1, pp 9-24.
21. Gores, G. J .; Kost, L. J .; LaRusso, N. F. The isolated perfused
rat liver: Conceptual and practical considerations. Hepatol-
ogy 1986, 6, 511-517.
22. Bass L; Keiding S. Physiologically based models and strategic
experiments in hepatic pharmacology. Biochem. Pharmacol.
1988, 37, 1425-1431.
23. Smith, R. L.; Timbrell, J . A. Factors affecting the metabolism
of phenacetin I. Influence of dose, chronic dosage, route of
administration and species on the metabolism of (1-c14-
acetyl)phenacetin. Xenobiotica 1974, 4, 489-501.
24. Miner, D. J .; Kissinger, P. T. Evidence for the involvement
of N-acetyl-p-quinoneimine in acetaminophen metabolism.
Biochem. Pharmacol. 1979, 3285-3290.
35. Davies, M. I.; Lunte, C. E. Microdialysis sampling for hepatic
metabolism studies: Impact of microdialysis probe design
and implantation technique on liver tissue. Drug Metab.
Disp. 1995, 23, 1072-1079.
36. Morris, M. E.; Pang, K. S. Competition between two enzymes
for substrate removal in liver: Modulating effects due to
substrate recruitment of hepatocyte activity. J . Pharmacokin.
Biopharm. 1987, 15, 473-496.
37. Scott, D. O.; Lunte, C. E. In vivo microdialysis sampling in
the bile, blood, and liver of rats to study the disposition of
phenol. Pharm. Res. 1993, 10, 335-342.
38. Iida, S.; Mizuma, T.; Sakuma, N.; Hayashi, M.; Awazu, S.
Transport of acetaminophen conjugates in isolated rat hepa-
tocytes. Drug Metab. Disp. 1989, 17, 341-344.
39. Barrow, G. N. Physical Chemistry, 5th ed.; McGraw Hill Book
Co.: New York, 1988; p 803.
40. The estimated Vmax and Km for acetaminophen were found
in the paper by Morris and Pang36 after most of the
simulations for the tables were performed using the model
phenol metabolism estimates given by Pang.18
41. Goresky, C. A.; Pang, K. S.; Schwab, A. J .; Barker, F. I.,
Cherry, W. F.; Bach, G. G. Uptake of a protein-bound polar
compound, acetaminophen sulfate by perfused rat liver.
Hepatology 1992, 16, 173-190.
42. Koster, H.; Halsema, I.; Scholtens, E.; Knippers, M.; Mulder,
G. J . Dose-dependent shifts in the sulfation and glucuronida-
tion of phenolic compounds in the rat in vivo and in isolated
hepatocytes: The role of saturation of phenolsulfotransferase.
Biochem. Pharmacol. 1981, 30, 2569-2575.
25. Van Belle K.; Sarre S.; Ebinger G.; Michotte Y. Quantitative
microdialysis for the in vivo measurement of carbamazepine,
oxcarbazepine and their major metabolites in rat brain and
liver tissue and in blood using the internal standard tech-
nique. Eur. J . Pharm. Sci. 1995, 3, 273-280.
26. Stenken, J . A. Identification and Modeling of Parameters that
Influence Microdialysis Sampling in vitro and in vivo. Ph.D.
Dissertation, University of Kansas, 1995.
43. Pang K. S.; Terrell J . A. Conjugation kinetics of acetami-
nophen by the perfused rat liver preparation. Biochem.
Pharmacol. 1981, 30, 1959-1965.
44. Sam, P. M.; J ustice, J . B., J r. Effect of general microdialysis-
induced depletion on extracellular dopamine. Anal. Chem.
1996, 68, 724-728.
27. Carnahan, B.; Luther, H. A.; Wilkes, J . O. Applied Numerical
Methods. Robert E. Krieger Publishing: Malabar, FL, 1990.
28. Press, W. H.; Flanner, B. P.; Teukolsky, S. A.; Vetterling,
W. T. Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed.; Cambridge University Press: Cam-
bridge, 1986.
45. Ståhle, L. Microdialysis in pharmacokinetics. Eur. J . Drug
Metab. Pharmacokinet. 1993, 18, 89-96.
29. Laidler, K. J . Chemical Kinetics, 3rd ed.; Harper Collins
Publishers: New York, 1987; p 401.
Acknowledgments
30. Rice, M. E.; Gerhardt, G. A.; Hierl, P. M.; Nagy, G.; Adams,
R. N. Diffusion coefficients of neurotransmitters and their
metabolites in brain extracellular fluid space. Neuroscience
1985, 15, 891-902.
31. Rice, M. E.; Nicholson, C. Diffusion and ion shifts in the brain
extracellular microenvironment and their relevance for vol-
tammetric measurements. The brain is not a beaker: In vivo
vs In vitro voltammetry. In Neuromethods, Vol. 27: Volta-
mmetric Methods in Brain Systems; Boulton, A., Baker, G.;
Adams, R. N., Eds.; Humana Press Inc. New York, 1995; pp
27-79.
This work was supported by NIH (R01 GM45566) and the
Swedish Medical Council (09069). A Procter & Gamble Bioana-
lytical Chemistry Fellowship and a J . William Fulbright Fellow-
ship to Sweden supported J .A.S. Conversations with Dr. Paul
Morrison and discussions, faxes, and e-mail with Dr. Peter
Bungay, who both work at the Drug Delivery and Kinetics
Resource, Biomedical Engineering & Instrumentation Program,
Office of Research Services, National Institutes of Health, are
greatly appreciated.
J S970288Z
320 / Journal of Pharmaceutical Sciences
Vol. 87, No. 3, March 1998