8098
S. Enthaler et al. / Tetrahedron Letters 47 (2006) 8095–8099
6
and 7). Comparing different substitutions on the
In Transition Metals for Organic Synthesis, 2nd ed.; Beller,
M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; pp 145–
66; (d) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.;
Studer, M. Adv. Synth. Catal. 2003, 345, 103–151; (e)
Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226–
phenyl ring no reliable relationship between electron
donating and electron withdrawing substituents and
activity was observed (Table 4, entries 1–4). Similar to
the model reaction, in all cases conversion and yield
were nearly identical.
1
2
36; (f) Samec, J. S. M.; B a¨ ckvall, J.-E.; Andersson, P. G.;
Brandt, P. Chem. Soc. Rev. 2006, 35, 237–248.
4
. Selected recent examples of transfer hydrogenations: (a)
Schlatter, A.; Kundu, M. K.; Woggon, W.-D. Angew.
Chem., Int. Ed. 2004, 43, 6731–6734; (b) Xue, D.; Chen,
Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. J. Org.
Chem. 2005, 70, 3584–3591; (c) Wu, X.; Li, X.; King, F.;
Xiao, J. Angew. Chem., Int. Ed. 2005, 44, 3407–3411; (d)
Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J.
Am. Chem. Soc. 2005, 127, 7318–7319; (e) Baratta, W.;
Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette,
M.; Zangrando, E.; Rigo, P. Angew. Chem., Int. Ed. 2005,
In agreement with previous findings the highest yield is
obtained with 2-methoxyacetophenone due to the pres-
ence of a second coordination site.
1
9
In addition to aryl alkyl ketones, we also examined more
challenging dialkyl ketones in this iron-catalyzed trans-
fer hydrogenation. Good conversion and yield (89–
9
0%) were observed for both substrates applying an iron
catalyst containing 1e as ligand. In general, ligand 1e
gave better results compared to 1b. This effect is espe-
cially pronounced for the dialkyl substrates (Table 4,
entries 8 and 9).
4
4, 6214–6219.
5
. Due to the widespread abundance of iron in earth’s crust
and the easy accessibility the current price of iron is
relatively low (approximately 300 US-dollar/t) compared
to rhodium, iridium or ruthenium. Furthermore, iron is an
essential trace element (daily dose for humans 5–28 mg)
and is involved in an extensive number of biological
processes.
In conclusion, we have demonstrated for the first time
the successful application of in situ prepared iron
porphyrin catalysts in the transfer hydrogenation of
ketones. The catalyst system is easily prepared and mim-
ics biologically occurring Fe complexes. Under opti-
6
. Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev.
2
004, 104, 6217–6254.
7. Noyori, R.; Umeda, I.; Ishigami, T. J. Org. Chem. 1972,
7, 1542–1545.
. (a) Jothimony, K.; Vancheesan, S. J. Mol. Catal. 1989, 52,
01–304; (b) Jothimony, K.; Vancheesan, S.; Kuriacose, J.
À1
mized conditions turnover frequencies up to 642 h
3
were achieved. The scope and limitation of the catalyst
were demonstrated on the reduction of nine different
ketones with good to excellent yields.
8
9
3
C. J. Mol. Catal. 1985, 32, 11–16.
. Bianchini, C.; Farnetti, E.; Graziani, M.; Peruzzini, M.;
Polo, A. Organometallics 1993, 12, 3753–3761.
1
0. Chen, J.-S.; Chen, L.-L.; Xing, Y.; Chen, G.; Shen, W.-Y.;
Acknowledgements
Dong, Z.-R.; Li, Y.-Y.; Gao, J.-X. Huaxue Xuebao 2004,
6
2, 1745–1750.
This work has been financed by the State of Mecklen-
burg-Western Pomerania, the Bundesministerium f u¨ r
Bildung und Forschung (BMBF) and the Deutsche
Forschungsgemeinschaft (Leibniz-award). We thank
Mr. B. Hagemann, Mrs. C. Mewes, Mrs. M. Heyken,
Mrs. S. Buchholz, and Dr. C. Fischer (all Leibniz-Insti-
tut f u¨ r Katalyse e.V. an der Universit a¨ t Rostock) for
their excellent technical and analytical support.
1
1. (a) Jacqueline, H.-P. Chiral Auxiliaries and Ligands in
Asymmetric Synthesis; John Wiley and Sons: New York,
1
995; (b) Larrow, J. F.; Jacobsen, E. N. Topics Organo-
met. Chem. 2004, 6, 123–152.
12. (a) Porphyrins and Metalloporphyrins; Smith, K. M., Ed.;
Elsevier: Netherlands, 1975; (b) The Porphyrins; Dolphin,
D., Ed.; Academic Press: New York, 1978; (c) Che, C.-M.;
Huang, J.-S. Coord. Chem. Rev. 2002, 231, 151–164; (d)
Simonneaux, G.; Le Maux, P. Coord. Chem. Rev. 2002,
2
28, 43–60; (e) Rose, E.; Andrioletti, B.; Zrig, S.; Quel-
quejeu-Etheve, M. Chem. Soc. Rev. 2005, 34, 573–583.
13. (a) Munire, B. Chem. Rev. 1992, 92, 1411–1456; (b)
Mansuy, D. Coor. Chem. Rev. 1993, 125, 129–141; (c)
Metalloporphyrins in Catalytic Oxidations; Sheldon, R. A.,
Ed.; M. Dekker Inc.: New York, 1994; (d) Che, C.-M.;
Yu, W.-Y. Pure Appl. Chem. 1999, 71, 281–288; (e)
Vinhado, F. S.; Martins, P. R.; Iamamoto, Y. Curr.
Topics. Catal. 2002, 3, 199–213; (f) Rose, E.; Andrioletti,
B.; Zrig, S.; Quelquejeu-Etheve, M. Chem. Soc. Rev. 2005,
34, 573–583; (g) Shitama, H.; Katsuki, T. Tetrahedron
Lett. 2006, 47, 3203–3207; (h) Zhou, C. Y.; Chan, P. W.
H.; Che, C. M. Org. Lett. 2006, 8, 325–328; (i) Berkessel,
A. Pure Appl. Chem. 2005, 77, 1277–1284.
14. All porphyrins are commercial available by Strem or
Aldrich except porphyrin 1d, which was synthesized
according to a literature protocol: (a) Lindsey, J. S.;
Hsu, H. C.; Schreiman, I. C. Tetrahedron Lett. 1986, 27,
4969–4970; (b) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.;
Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem. 1987,
52, 827–836.
References and notes
1
. (a) Lennon, I. C.; Ramsden, J. A. Org. Process Res. Dev.
005, 9, 110–112; (b) Hawkins, J. M.; Watson, T. J. N.
Angew. Chem. 2004, 116, 3286–3290; (c) Noyori, R.;
Ohkuma, T. Angew. Chem. 2001, 113, 40–75; (d) Miyagi,
M.; Takehara, J.; Collet, S.; Okano, K. Org. Process Res.
Dev. 2000, 4, 346–348.
2
2
. (a) Transition Metals for Organic Synthesis, 2nd ed.;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004;
(
b) Cornils, B.; Herrmann, W. A. Applied Homogeneous
Catalysis with Organometallic Compounds; Wiley-VCH:
Weinheim, 1996; (c) Kitamura, M.; Noyori, R. In Ruthe-
nium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley-
VCH: Weinheim, 2004; (d) Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Berlin, 1999; (e) Noyori, R. Asymmetric
Catalysis in Organic Synthesis; Wiley: New York, 1994.
. (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev.
3
1
992, 51, 1051–1069; (b) Noyori, R.; Hashiguchi, S. Acc.
15. (a) Junge, K.; Oehme, G.; Monsees, A.; Riermeier, T.;
Dingerdissen, U.; Beller, M. Tetrahedron Lett. 2002, 43,
Chem. Res. 1997, 30, 97–102; (c) Gladiali, S.; Mestroni, G.