Table 6 Data from the solar cell of the pbim derivatives of ruthenium
complexes tested under direct sunlight (Γv ≈ 6.0 × 10Ϫ5 mol cmϪ2
St. Andrews for funding Miss Gemma Holliday who helped
with the electrochemical analysis.
)
Compound
Voc/mV
Isc/µA
References
[(bpy)2Ru(pbimC2)](PF6)2
[(bpy)2Ru(pbimC3)](PF6)2
[(bpy)2Ru(pbimC4)](PF6)2
273
177
135
96
60
47
1 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem.
Soc., 1993, 115, 6382–6390.
2 K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 1998,
177, 347–414.
3 J. J. Kelly and D. Vanmaekelbergh, Electrochim. Acta, 1998, 43,
2773–2780.
4 J. E. Moser, P. Bonnote and M. Grätzel, Coord. Chem. Rev., 1998,
171, 245–250.
5 L. M. Peter, E. A. Ponomarev, G. Franco and N. J. Shaw,
Electrochim. Acta, 1999, 45, 549–560.
6 C. A. Bignozzi, R. Argazzi and C. J. Kleverlaan, Chem. Soc. Rev.,
2000, 29, 87–96.
7 C. G. Garcia, J. F. de Lima and N. Y. M. Iha, Coord. Chem. Rev.,
2000, 196, 219–247.
8 C. A. Kelly and G. J. Meyer, Coord. Chem. Rev., 2001, 211, 295–315.
9 A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49–68.
10 A. Hagfeldt and M. Grätzel, Acc. Chem. Res., 2000, 33, 269–277.
11 J. M. Stipkala, F. N. Castellano, T. A. Heimer, C. A. Kelly, K. J. T.
Livi and G. J. Meyer, Chem. Mater., 1997, 9, 2341–2353.
12 B. O’Regan and M. Grätzel, Nature, 1991, 353, 737–740.
13 A. Zaban, S. Ferrere and B. A. Gregg, J. Phys. Chem. B, 1998, 102,
452–460.
Further experiments such as time-resolved transient absorption
measurements on the ps timescale will be necessary to confirm
this point.
Low IPCE values have also been observed for sensitizers with
pendant linkage groups; for example, modification of RuN3 by
inserting a phenyl group between the bpy and the carboxylic
acid group was found to decrease the IPCE from over 80% to
only 8%,37 while a propyl group led to a ca. 50% decrease.27
Lowering of the IPCE to 2% or less was observed using proline-
type anchors of length 14–16 Å instead of the usual carboxyl-
ated bpy ligands.33 In contrast, for a series of merocyanine
dye-sensitizers the efficiency increased as the chain length
increased to 18–20 carbon atoms. It was proposed that the back
electron transfer reaction was dominant in this case.38 An inter-
esting study was carried out on [ReCl(CO)3(bpy–(CH2)2CO2H)]
sensitizers.39 It was shown that inserting the first CH2 group
led to a 200-fold drop—much greater than predicted from
Marcus theory of electron-transfer distance dependence.
Thereafter, however, increasing the chain length decreased the
rate in line with theory. A similar trend was observed for Fe
sensitizers.40
14 M. K. Nazeeruddin, P. Pechy and M. Grätzel, Chem. Commun.,
1997, 1705–1706.
15 R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano and
G. J. Meyer, J. Am. Chem. Soc., 1995, 117, 11815–11816.
16 A. Yoshimura, K. Nozaki, N. Ikeda and T. Ohno, Bull. Chem. Soc.
Jpn., 1996, 69, 2791–2799.
A further, perhaps more serious problem with the pbim com-
plexes is that the π* energy level of the pbim ligand is much
higher than that of the other bpy ligands. Evidence for this lies
in the assignment of the first two reduction potentials as being
bpy based. This means that in the excited state the electron
resides on the bpy ligand, rather than the pbim. As a con-
sequence the electron is very far from the anchoring point to the
surface of the TiO2. It has been shown that this is deleterious
to the IPCE; for example, in terpy/biquinoline mixed ligand
sensitizers the IPCE falls from 75.6% to 1.74%.37 The use
of alternative ligands to bipyridine or the preparation of
homoleptic pbim complexes may solve this problem.
17 S. A. Thomson, J. A. Josey, R. Cadilla, M. D. Gaul, C. F. Hassman,
M. J. Luzzio, A. J. Pipe, K. L. Reed, D. J. Ricca, R. W. Wiethe and
S. A. Noble, Tetrahedron, 1995, 51, 6179–6194.
18 M. K. Nazeeruddin, E. Muller, R. Humphry-Baker, N. Vlacho-
poulos and M. Grätzel, J. Chem. Soc., Dalton Trans., 1997, 4571–
4578.
19 O. Kohle, S. Ruile and M. Grätzel, Inorg. Chem., 1996, 35, 4779–
4787.
20 S. Ruile, O. Kohle, P. Pechy and M. Grätzel, Inorg. Chim. Acta, 1997,
261, 129–140.
21 R. K. Boggess and R. B. Martin, Inorg. Chem., 1974, 13, 1525.
22 M. R. Grimmett, in Comprehensive Heterocyclic Chemistry,
A. R. Katritzky and C. W. Rees, eds., 1979, pp. 382–390.
23 K. H. Mayer, Synthesis, 1975, 673.
24 M. A. Haga, Inorg. Chim. Acta, 1983, 75, 29.
25 P. Qu and G. J. Meyer, Langmuir, 2001, 17, 6720–6728.
26 Y. J. Hou, P. H. Xie, B. W. Zhang, Y. Cao, X. R. Xiao and
W. B. Wang, Inorg. Chem., 1999, 38, 6320.
27 T. A. Heimer, S. T. Darcangelis, F. Farzad, J. M. Stipkala and
G. J. Meyer, Inorg. Chem., 1996, 35, 5319–5324.
28 X. M. Xiao, M. A. Haga, T. Matsumurainoue, Y. Ru, A. W. Addison
and K. Kano, J. Chem. Soc., Dalton Trans., 1993, 2477–2484.
29 M. A. Haga and A. Tsunemitsu, Inorg. Chim. Acta, 1989, 164, 137.
30 G. Wolfbauer, A. M. Bond, G. B. Deacon, D. MacFarlane and
L. Spiccia, J. Am. Chem. Soc., 2000, 122, 130.
31 S. Anderson, E. C. Constable, M. P. Dare-Edwards,
J. B. Goodenough, A. Hamnett, K. R. Seddon and R. D. Wright,
Nature, 1979, 280, 571.
32 D. A. Gulino and H. G. Drickamer, J. Phys. Chem., 1984, 88, 1173.
33 S. A. Trammell, J. A. Moss, J. C. Yang, B. M. Nakhle, C. A. Slate,
F. Odobel, M. Sykora, B. W. Erickson and T. J. Meyer, Inorg. Chem.,
1999, 38, 3665.
34 P. Bonhote, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos,
F. Lenzmann, P. Comte and M. Grätzel, J. Phys. Chem. B, 1998, 102,
1498.
35 Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R.
Durrant, J. Phys. Chem., 1996, 100, 20056.
36 R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano and
G. J. Meyer, Inorg. Chem., 1994, 33, 5741.
Conclusions
The new carboxylated pbim complexes display well-resolved
NMR spectra which can be fully assigned by 2D NMR spectro-
scopy. The pbimH complex electrochemistry has been reinvesti-
gated and evidence was presented for reduction of the deproton-
ated ligand. The carboxylated pbim complexes show good
electrochemical reversibility, with slightly more positive redox
potentials than the pbimH parent complex. In general, the
spectroscopic (light-harvesting) and electrochemical properties
of the carboxylated complexes (relating to electron collection
efficiency) were very similar. Hence, any difference in solar-cell
sensitization performance must be due to changes in the length
of the spacer. Unfortunately, the higher π* energy level of the
pbim ligand means that the electron in the MLCT excited state
resides on bpy, well away from the anchoring point. Con-
sequently, the IPCE values are too low to differentiate between
the complexes, but a fall in the open-circuit potential as the
chain length increases was observed.
37 B. W. Jing, H. Zhang, M. H. Zhang, Z. H. Lu and T. Shen, J. Mater.
Chem., 1998, 8, 2055.
Acknowledgements
38 K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe,
S. Suga and H. Arakawa, J. Phys. Chem. B, 2002, 106, 1363.
39 J. B. Asbury, E. C. Hao, Y. Q. Wang and T. Q. Lian, J. Phys. Chem.
B, 2000, 104, 11957.
We thank Dr D. T. Richens (School of Chemistry), Dr Bruce
Sinclair (School of Physics) and Dr Ebinazar Namdas (Organic
Semiconductor Centre) and the CVCP for an ORS scholarship
to H. Y. We thank the Carnegie Fund and the University
40 S. Ferrere, Chem. Mater., 2000, 12, 1083.
D a l t o n T r a n s . , 2 0 0 3 , 6 8 5 – 6 9 1
691