ACS Catalysis
Page 8 of 10
Li, X. -D.; He, L. N. Reduction of sulfoxides and pyridine-N-oxides over iron
Oxidation of secondary amines catalyzed by dirhodium caprolactamate,
powder with water as hydrogen source promoted by carbon dioxide. Green
Chem. 2013, 15, 1274–1279. (f) He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H.
Efficient synthesis of tertiary α-hydroxy ketones through CO2-promoted regi-
oselective hydration of propargylic alcohols. Green Chem. 2014, 16, 3729–
3733. (g) Lee, R.; Harris, J.; Champagne, P.; Jassop, P. G. CO2-Catalysed
conversion of carbohydrates to 5-hydroxymethyl furfural. Green Chem. 2016,
18, 6305–6310. (h) Pupo, G.; Properzi, R.; List, B. Asymmetric Catalysis
with CO2: The Direct α-Allylation of Ketones. Angew. Chem. Int. Ed. 2016,
55, 6099–6102. (i) Kapoor, M.; Liuz, D.; Young, M. C. Carbon Dioxide-
Mediated C(sp3)–H Arylation of Amine Substrates. J. Am. Chem. Soc. 2018,
140, 6818–6822. (j) Schilling, W.; Das, S. CO2-catalysed/promoted transfor-
mation of organic functional groups. Tetrahedron Lett. 2018, 59, 3821-3828.
(a) Riemer, D.; Mandaviya, B.; Schilling, W.; Götz, A. C.; Kühl, T.; Finger,
M.; Das, S. CO2-Catalyzed Oxidation of Benzylic and Allylic Alcohols with
DMSO. ACS Catal. 2018, 8, 3030–3034. (b) Hirapara, P.; Riemer, D.; Hazra,
N.; Gajera, J.; Finger, M.; Das, S. CO2-assisted synthesis of non-symmetric
α-diketones directly from aldehydes via C–C bond formation. Green Chem.
2017, 19, 5356–5360.
Chem. Commun. 2007, 745–747.
1
2
3
4
5
6
7
8
[13] (a) Samec, J. M. S.; Éll, A. H.; Bäckvall, J.-E. Efficient Ruthenium-Catalyzed
Aerobic Oxidation of Amines by Using a Biomimetic Coupled Catalytic Sys-
tem, Chem. Eur. J. 2005, 11, 2327 – 2334. (b) So, M.-H.; Liu, Y.; Ho, C.-M.;
Che, C.-M. Graphite-Supported Gold Nanoparticles as Efficient Catalyst for
Aerobic Oxidation of Benzylic Amines to Imines and N-Substituted 1,2,3,4-
Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic
Study, Chem. Asian J. 2009, 4, 1551–1561. (c) Wang, J.-R.; Fu, Y.; Zhang,
B.-B.; Cui, X.; Liu, L.; Guo, Q.-X. Palladium-catalyzed aerobic oxidation of
amines, Tetrahedron Lett. 2006, 47, 8293–8297.
9
[14] (a) Jin, Y.; Ou, L.; Yang, H.; Fu, H. Visible-Light-Mediated Aerobic Oxida-
tion of N-Alkylpyridinium Salts under Organic Photocatalysis. J. Am. Chem.
Soc. 2017, 139, 14237–14243. (b) Romero, N.; Nicewicz, D. A. Organic Pho-
toredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. (c) Neumann, M.;
Fuldner, S.; König, B.; Zeitler, K. Metal-Free, Cooperative Asymmetric Or-
ganophotoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. 2011,
50, 951–954. (d) Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.
Site-selective arene C–H amination via photoredox catalysis. Science 2015,
349, 1326–1330. (e) Ghosh, I.; Ghosh, T.; Bardagi, L. J.; König, B. Reduc-
tion of aryl halides by consecutive visible light-induced electron transfer pro-
cesses. Science, 2014, 346, 725–728. (f) Schilling, W.; Riemer, D.; Zhang,
Y.; Hatami, N.; Das, S. Metal-Free Catalyst for Visible-Light-Induced Oxida-
tion of Unactived Alcohols Using Air/Oxygen as an Oxidant. ACS Catal.
2018, 8, 5425–5430. (g) Zhang, Y.; Riemer, D.; Schilling, W.; Kollmann, J.;
Das, S. Visible-Light-Mediated Efficient Metal-Free Catalyst for α-
Oxygenation of Tertiary Amines to Amides. ACS Catal. 2018, 8, 6659–6664.
[15] Mani, T.; Liu, D.; Zhou, D.; Li, L.; Knabe, W. E.; Wang, F.; Oh, K.; Merou-
eh, S. O. Probing Binding and Cellular Activity of Pyrrolidinone and Piperi-
dinone Small Molecules Targeting the Urokinase Receptor, ChemMedChem
2013, 8, 1963–1977.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[6]
[7]
(a) Layer, R. W.The Chemistry of Imines. Chem. Rev. 1963, 63, 489–510. (b)
Patil. R. D.; Adimurthy, S. Catalytic Methods for Imine Synthesis. Asian. J.
Org. Chem. 2013, 2, 726–744. (c) Martin, S. F. Recent applications of imines
as key intermediates in the synthesis of alkaloids and novel nitrogen hetero-
cycles. Pure Appl. Chem. 2009, 81, 195–204. (d) Belowich, M. E.; Stoddart,
J. F.; Dynamic imine chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024. (e)
Dai, L.; Lin, Y.; Hou, X.; Zhou, Y. Stereoselective reactions with imines. Pu-
re Appl. Chem. 1999, 71, 1033–1040. (f) Zhou, S.; Fleischer, S.; Junge, K.;
Das, S.; Addis, D.; Beller. M. Enantioselective Synthesis of Amines: General,
Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines. An-
gew. Chem. Int. Ed. 2010, 49, 8121–8125. (g) Wendlandt, A. E.; Stahl, S. S.
Modular o-Quinone Catalyst System for Dehydrogenation of Tetrahydro-
quinolines under Ambient Conditions. J. Am. Chem. Soc. 2014, 136, 11910–
11913. (h) Wendlandt, A. E.; Stahl, S. S. Bioinspired Aerobic Oxidation of
Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone
Catalyst. J. Am. Chem. Soc. 2014, 136, 506–512.
[16] Sathe, A. A.; Hartline, D. R.; Radosevich, A. T. A synthesis of α-amino acids
via direct reductive carboxylation of imines with carbon dioxide, Chem.
Commun. 2013, 49, 5040–5042.
[17] (a) Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. Pd(II)-Catalyzed
Asymmetric Addition of Malonates to Dihydroisoquinolines, J. Am. Chem.
Soc. 2006, 128, 14010-14011. (b) Itoh, T.; Miyazaki, M., Fukuoka, H.; Naga-
ta, K.; Ohsawa, A. Formal Total Synthesis of (−)-Emetine Using Catalytic
Asymmetric Allylation of Cyclic Imines as a Key Step, Org. Lett. 2006, 8,
1295–1297. (c) Szawkało, J.; Czarnock, Z. Enantioselective Synthesis of
Some Tetracyclic Isoquinoline Alkaloids by Asymmetric Transfer Hydro-
genation Catalysed by a Chiral Ruthenium Complex, Monatsh. Chem. 2005,
136, 1619–1627. (c) Kanemitsu, T.; Yamashita, Y.; Nagata, K.; Itoh, T. Cata-
lytic Asymmetric Synthesis of (R)-(–)-Calycotomine, (S)-(–)-Salsolidine and
(S)-(–)-Carnegine, Synlett 2006, 10, 1595–1597. (d) Hoye, T. R.; Chen, M.
Total synthesis of (ent)-korupensamine D, Tetrahedron Lett. 1996, 37, 3099–
3100. (e) Liu, L. Enantioselective Synthesis of Protoberberine Alkaloids via
(–)-Sparteine-mediated Asymmetric Condensation-Cyclisation of o-
Toluamide Anions with 3,4-Dihydroisoquinolines, Synthesis 2003, 11, 1705–
1706.
[8]
(a) Cole, E. B.; Lakkaraju, P. S.; Rampulla, D. M.; Morris, A. J.; Abelev, E.;
Bocarsly, A. B. Using a One-Electron Shuttle for the Multielectron Reduction
of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights. J. Am.
Chem. Soc. 2010, 132, 11539–11551. (b) Boston, D. J.; Xu, C.; Armstrong,
D. W.; MacDonnell, F. M. Photochemical Reduction of Carbon Dioxide to
Methanol and Formate in a Homogeneous System with Pyridinium Catalysts.
J. Am. Chem. Soc. 2013, 135, 16252–16255.
[9]
(a) Seo, H.; Liu, A.; Jamison, T. F. Direct β-Selective Hydrocarboxylation of
Styrenes with CO2 Enabled by Continuous Flow Photoredox Catalysis. J. Am.
Chem. Soc. 2017, 139, 13969–13972. (b) Morgenstern, D. A.; Wittrig, R. E.;
Fanwick, P. E.; Kubiak, C. P. Photoreduction of carbon dioxide to its radical
anion by nickel cluster [Ni3(µ3-I)2(dppm)3]: Formation of Two Carbon–
.-
Carbon Bonds via Addition of CO2 to Cyclohexene. J. Am. Chem. Soc.
1993, 115, 6740–6471. (c) Akhgarnusch, A.; Höckendorf, R. F.; Hao, Q.; Jä-
ger, K. P.; Siu, C.; Beyer, M. K. Carboxylation of methyl acrylate by carbon
dioxide radical anions in gas-phase water clusters. Angew. Chem. Int. Ed.
2013, 52, 9327–9330.
[18] (a) Capim, S. L.; Gonçalves, G. M.; dos Santos, G. C. M.; Marinho, B. G.
High analgesic and anti-inflammatory in vivo activities of six new hybrids
NSAIAs tetrahydropyran derivatives. Bioorg. Med. Chem. 2013, 21, 6003–
6010. (b) Arisawa, M., Kasaya, Y., Obata, T.; Sasaki, T.; Ito, M.; Abe, H.;
Ito, Y.; Yamano, A.; Shto, S. Indomethacin Analogues that Enhance Doxoru-
bicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activ-
ity. ACS Med. Chem. Lett. 2011, 2, 353–357. (c) Milen, M.; Ábrányi-Balogh,
P. Synthesis of β-carbolines. Chem. Heterocycl. Compd. 2016, 52, 996–998.
(d) Hibino, S.; Choshi, T. Simple indole alkaloids and those with a nonrear-
ranged monoterpenoid unit. Nat. Prod. Rep. 2001, 18, 66–87.
[10] (a) Perez, E. R.; Santos, R. H. A.; Gambardella, M. T. P.; de Macedo, L. M.;
Rodrigues-Filho, U. P.; Launay, J.-C.; Franco, D. W. Activation of Carbon
Dioxide by Bicyclic Amidines, J. Org. Chem. 2004, 69, 8005–8011. (b) Hel-
debrant, D. J.; Jessop, P. G.; Thomas, C. A.; Eckert, C. A.; Liotta, C. L. The
Reaction of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) with Carbon Diox-
ide. J. Org. Chem. 2005, 70, 5335–5338.
[11] (a) Ji, X.; Su, Z.; Wang, P.; Ma, G.; Zhang, S. Integration of Artificial
Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A
Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to
Methanol. Small 2016, 12, 4753–4762. (b) Kuk, S. K.; Singh, R. K.; Nam, D.
H.; Singh, R.; Lee, J.-K.; Park, C. B. Photoelectrochemical Reduction of
Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
Angew. Chem. Int. Ed. 2017, 56, 3827–3832.
[19] (a) Balogh, M.; Hermecz, I.; Mészáros, Z.; Laszlo, P. Aromatization of 1,4-
Dihydropyridines by Clay-Supported Metal Nitrates. Helv. Chim. Acta 1984,
67, 2270–2272. (b) Khadilkar, B.; Borkar, S. Silica Gel Supported Ferric Ni-
trate: A Convenient Oxidizing Reagent. Synth. Commun. 1998, 28, 207–212.
(c) Xia, J.-J.; Wang, G.-W. One-Pot Synthesis and Aromatization of 1,4-
Dihydropyridines in Refluxing Water. Synthesis 2005, 14, 2379–2383. (c)
Vanden Eynde, J.-J.; D’Orazio, R.; Haverbeke, Y. V. Potassium permanga-
[12] (a) Iosub, A. V.; Stahl, S. S. Catalytic Aerobic Dehydrogenation of Nitrogen
Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-
Doped Carbon, Org. Lett. 2015, 17, 4404−4407. (b) Choi, H.; Doyle, M. P.
nate,
a versatile reagent for the aromatization of Hantzsch 1,4-
dihydropyridines. Tetrahedron 1994, 50, 2479–2484.
ACS Paragon Plus Environment