Organic & Biomolecular Chemistry
Paper
3 A. Tomillero and M. Moral, Gateways to clinical trials,
Methods Find. Exp. Clin. Pharmacol., 2009, 31, 661–700.
4 T. F. Molinski, Marine pyridoacridine alkaloids: structure,
of 1-Azaanthraquinone: Sequential C–N Bond Formation/
Lewis Acid Catalyzed Intramolecular Cyclization Strategy,
J. Org. Chem., 2017, 82, 8309–8316.
synthesis, and biological chemistry, Chem. Rev., 1993, 93, 12 (a) C. B. D. Koning, J. P. Michael, J. M. Nhlapo, R. Pathak
1825–1838.
and W. A. L. V. Otterlo, The Synthesis of Naphtho[a]carba-
zoles and Benzo[c]carbazoles, Synlett, 2003, 2003, 705–707;
(b) R. Pathak, J. M. Nhlapo, S. Govender, J. P. Michael and
C. B. D. Koning, A Concise Synthesis of Novel Naphtho[a]
carbazoles and Benzo[c]carbazoles, Tetrahedron, 2006, 62,
2820–2830.
5 A. P. Salas, L. L. Zhu, C. Sanchez, A. F. Brana, J. Rohr,
C. Mendez and J. A. Salas, Deciphering the late steps in the
biosynthesis of the anti-tumour indolocarbazole stauros-
porine: sugar donor substrate flexibility of the StaG glyco-
syltransferase, Mol. Microbiol., 2005, 58, 17–27.
6 S. Routier, G. Coudert and J.-Y. Mérour, Synthesis of 13 (a) B. Liégault, D. Lee, M. P. Huestis, D. R. Stuart and
naphthopyrrolo[3,4-c]carbazoles, Tetrahedron Lett., 2001,
42, 7025–7028.
K. Fagnou, Intramolecular Pd (II)-catalyzed oxidative biaryl
synthesis under air: reaction development and scope,
J. Org. Chem., 2008, 73, 5022–5028; (b) P. Patil, A. Nimonkar
and K. G. Akamanchi, Aryl-Free Radical-Mediated Oxidative
Arylation of Naphthoquinones Using o-Iodoxybenzoic Acid
and Phenylhydrazines and Its Application toward the
Synthesis of Benzocarbazoledione, J. Org. Chem., 2014, 79,
2331–2336; (c) V. Sridharan, M. A. Martin and
J. C. Menendez, Acid-Free Synthesis of Carbazoles and
Carbazolequinones by Intramolecular Pd-Catalyzed,
Microwave-Assisted Oxidative Biaryl Coupling Reactions–
Efficient Syntheses of Murrayafoline A, 2-Methoxy-3-methyl-
carbazole, and Glycozolidine, Eur. J. Org. Chem., 2009,
2009, 4614–4621.
7 (a) K. P. Carter, A. M. Young and A. E. Palmer, Fluorescent
sensors for measuring metal ions in living systems, Chem.
Rev., 2014, 114, 4564–4601; (b) U. H. F. Bunz,
J. U. Engelhart, B. D. Lindner and M. Schaffroth, Large
N-Heteroacenes: New Tricks for Very Old Dogs?, Angew.
Chem., Int. Ed., 2013, 52, 3810–3821.
8 (a) P. M. Beaujuge and J. R. Reynolds, Color control in
π-conjugated organic polymers for use in electrochromic
devices, Chem. Rev., 2010, 110, 268–320; (b) C. L. Wang,
H. L. Dong, W. P. Hu, Y. Q. Liu and D. B. Zhu,
Semiconducting π-conjugated systems in field-effect tran-
sistors: a material odyssey of organic electronics, Chem.
Rev., 2012, 112, 2208–2267.
9 (a) E. E. Langdon-Jones and S. J. A. Pope, The coordination
chemistry of substituted anthraquinones: Developments
and applications, Coord. Chem. Rev., 2014, 269, 32–53;
(b) R. M. F. Batista, S. P. G. Costa and M. M. M. Raposo,
Selective colorimetric and fluorimetric detection of cyanide
in aqueous solution using novel heterocyclic imidazo-
anthraquinones, Sens. Actuators, B, 2014, 191, 791–799;
(c) R. M. F. Batista, E. Oliveira, S. P. G. Costa, C. Lodeiro
and M. M. M. Raposo, Synthesis and Ion Sensing
Properties of New Colorimetric and Fluorimetric
Chemosensors Based on Bithienyl-lmidazo-Anthraquinone
Chromophores, Org. Lett., 2007, 9, 3201–3204.
14 (a) U. Pindur, N.-H. Kim and M. Eitel, The 3-vinylindole
parent compound and its anion: New elactivity aspects,
Tetrahedron Lett., 1990, 31, 1551–1552; (b) L. Zhou, B. Xu
and J. Zhang, Metal-Free Dehydrogenative Diels–Alder
Reactions of 2-Methyl-3-Alkylindoles with Dienophiles:
Rapid Access to Tetrahydrocarbazoles, Carbazoles, and
Heteroacenes, Angew. Chem., Int. Ed., 2015, 54, 9092–9096;
(c) C.-W. Kuo, A. Konala, L. Lin, T.-T. Chiang, C.-Y. Huang,
T.-H. Yang, V. Kavala and C.-F. Yao, Synthesis of benzo [a]
carbazole derivatives from 3-ethylindoles by exploiting the
dual character of benzoquinone as an oxidizing agent and
dienophile, Chem. Commun., 2016, 52, 7870–7873;
(d) Y. Guo, Z. Wang, Y. Zhu, Q. Zhang, D. Wei, X. Liu and
Z. Fu, Access to polyfunctionalized carbazoles through
π-extension of 2-methyl-3-oxoacetate indoles, Org. Chem.
Front., 2019, 6, 3741–3745.
15 (a) T. Matsubara, S. Asako, L. Ilies and E. Nakamura,
Synthesis of anthranilic acid derivatives through iron-cata-
lyzed ortho amination of aromatic carboxamides with
N-chloroamines, J. Am. Chem. Soc., 2014, 136, 646–649;
(b) C. Zhu, M. Yi, D. Wei, X. Chen, Y. Wu and X. Cui,
Copper-Catalyzed Direct Amination of Quinoline N-Oxides
via C–H Bond Activation under Mild Conditions, Org. Lett.,
2014, 16, 1840–1843; (c) J. Jiao, K. Murakami and K. Itami,
Catalytic Methods for Aromatic C–H Amination: An Ideal
Strategy for Nitrogen-Based Functional Molecules, ACS
Catal., 2016, 6, 610–633.
10 M.-C. Jiang and C.-P. Chuang, Manganese (III) acetate
initiated oxidative free radical reactions between 2-amino-
1, 4-naphthoquinones and β-dicarbonyl compounds, J. Org.
Chem., 2000, 65, 5409–5412.
11 (a) C. Jiang, M. Xu, S. Wang, H. Wang and Z.-J. Yao,
Azaanthraquinone assembly from N-propargylamino
quinone via a Au (I)-catalyzed 6-endo-dig cycloisomeriza-
tion, J. Org. Chem., 2010, 75, 4323–4325; (b) N. Fei, H. Yin,
S. Wang, H. Wang and Z.-J. Yao, CuCl2-Promoted 6-endo-
dig Chlorocyclization and Oxidative Aromatization
Cascade: Efficient Construction of 1-Azaanthraquinones
from N-Propargylaminoquinones, Org. Lett., 2011, 13,
4208–4211; (c) C. Ding, S. Tu, Q. Yao, F. Li, Y. Wang, W. Hu
and A. Zhang, One-Pot Three-Step Synthesis of Naphtho [2,
3-a] carbazole-5, 13-diones using
a Tandem Radical 16 (a) H. Kim, K. Shin and S. Chang, Iridium-catalyzed C-H
Alkylation–Cyclization–Aromatization Reaction Sequence,
Adv. Synth. Catal., 2010, 352, 847–853; (d) A. Borah,
A. Sharma, H. Hazarika, K. Sharma and P. Gogoi, Synthesis
amination with anilines at room temperature: compatibility
of iridacycles with external oxidants, J. Am. Chem. Soc.,
2014, 136, 5904–5907; (b) J. Roane and O. Daugulis, A
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 4593–4598 | 4597