Vol. 21, No. 8, 2010
Rebelo et al.
1541
conversion (50%) and enantiomeric ratio (E > 200). The
lipase immobilized by glutaraldehyde method showed the
best results in terms of reusability, preserving the enzyme
activity for at least 8 successive cycles. These results
validate a new green approach to be used in the KR of
secondary alcohols.
2. For some examples, see: Hara, P.; Hanefeld, U.; Kanerva, L. T.;
J. Mol. Catal. B: Enzym. 2008, 50, 80; Hara, P.; Hanefeld, U.;
Kanerva, L. T.; Green Chem. 2009, 11, 250; Itoh, T.; Han, S.;
Matsushida,Y.; Hayase, S.; Green Chem. 2004, 6, 437; Zhang,
Y.; Li, J.; Han, D.; Zhang, H.; Liu, P.; Li, C.; Biochem. Biophys.
Res. Commun. 2008, 365, 609.
3. For some reviews on enzyme immobilization, see: Hanefeld,
U.; Gardossi, L.; Magner, E.; Chem. Soc. Rev. 2009, 38, 453;
Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J.
M.; Fernandez-Lafuente, R.; Enzyme Microb. Technol. 2007,
40, 1451; Sheldon, R. A.; Adv. Synth. Catal. 2007, 349, 1289.
Cao, L.; Curr. Opin. Chem. Biol. 2005, 9, 217; Cao, L.; van
Langen, L.; Sheldon, R. A.; Curr. Opin. Biotechnol. 2003, 14,
387.
Experimental
General procedure for enzymatic kinetic resolution of
substituted (RS)-1-(phenyl)ethanols (1a-e)
To 2 mL microtube (eppendorff®) containing 20 mg
of magnetic nanoparticles with immobilized lipase by
appropriate methodology (see Table 1), substituted
(RS)-1-(phenyl)ethanols (1a-e) (0.01 mmol) and vinyl
acetate (0.3 mmol) were dispersed in toluene and stirred
with 800 rpm at 32 ºC for 24 h. After the reaction, the
samples were analyzed by GC analysis using a chiral
capillary column.
4. Lu, A. H.; Salabas, E. L.; Schüth, F.; Angew. Chem. Int. Ed.
2007, 46, 1222; Huang, S.-H.; Liao, M.-H.; Chen, D.-H.;
Biotechnol. Prog. 2003, 19, 1095; Dyal, A.; Loos, K.; Noto,
M.; Chang, S. W.; Spagnoli, C.; Shafi, K. V. P. M.; Ulman, A.;
Cowman, M.; Gross, R.A.; J. Am. Chem. Soc. 2003, 125, 1684.
5. Dekker, R. F. H.; Appl. Biochem. Biotechnol.1989, 22, 289.
6. For some recent examples, see: Netto , C. G. C. M.; Andrade,
L. H.; Toma, H. E.; Tetrahedron: Asymmetry 2009, 20, 2299;
Wang, X.; Dou, P.; Zhao, P.; Zhao, C.; Ding, Y.; Xu, P.;
ChemSusChem 2009, 2, 947; Chaubey,A.; Parshad, R.; Taneja,
S. C.; Qazi, G. N.; Process Biochem. 2009, 44, 154; Hu, B.; Pan,
J.;Yu, H.-L.; Liu, J.-W.; Xu, J.-H.; Process Biochem. 2009, 44,
1019; Lee, D. G.; Ponvel, K. M.; Kim, M.; Hwang, S.; Ahn, I.
S.; Lee, C. H.; J. Mol. Catal. B: Enzym. 2009, 57, 62.
7. Shaw, S.-Y.; Chen, Y.-J.; Ou, J.-J.; Ho, L.; Enzyme Microb.
Technol. 2006, 39, 1089.
Reusability of B. cepacia lipase on the enzymatic kinetic
resolution of (RS)-1-(phenyl)ethanol (1a)
To 2 mL microtube (eppendorff®) containing 20 mg
of magnetic nanoparticles with immobilized B. cepacia
lipase by appropriate methodology (see Figure 2),
(RS)-1-(phenyl)ethanol (1a) (0.01 mmol) and vinyl acetate
(0.3 mmol) were dispersed in toluene and stirred at 32 oC
for 24 h under 800 rpm. After 24 h reaction, the magnetic
nanoparticles were controlled by magnetic and supernatant,
containing the alcohol 1a and ester 2a, was collected for
determination of the enantiomeric excess and conversion.
Then, the immobilized B. cepacia lipase on the magnetic
nanoparticles was washed with toluene (3×1 mL) and then
used for the next cycle.
8. Pan, C.; Hu, B.; Li, W.; Sun,Y.;Ye, H.; Zeng, X.; J. Mol. Catal.
B: Enzym. 2009, 61, 208.
9. Sulek, F.; Drofenik, M.; Habulin, M.; Knez, Z.; J. Magn.
Magn. Mat. 2010, 332, 179; Sohn, O. J.; Kim, C. K.; Rhee, J.
I.; Biotechnol. Bioprocess Eng. 2008, 13, 716; Betancor, L.;
Fuentes, M.; Dellamora-Ortiz, G.; Lopez-Gallego, F.; Hidalgo,
A.; Alonso-Morales, N.; Mateo, C.; Guisan, J. M.; Fernandez-
Lafuente, R.; J. Mol. Catal. B: Enzym. 2005, 32, 97; Kouassi,
G. K.; Irudayaraj, J.; McCarty, G.; J. Nanobiotech. 2005, 3, 1;
Rossi, L. M.; Quach, A. D.; Rosenzweig, Z.; Anal. Bioanal.
Chem. 2004, 380, 606.
Acknowledgments
The authors acknowledge the support from FAPESP,
CNPq and PETROBRAS.
10. Yusdy; Patel, S. R.; Yapa, M. G. S.; Wang, D. I. C.; Biochem.
Eng. J. 2009, 48, 13; Li, G.Y.; Huang, K. L.; Jiang,Y. R.;Yang,
D. L.; Ding, P.; Int. J. Biol. Macromol. 2008, 42, 405; Goldberg,
K.; Krueger,A.; Meinhardt, T.; Kroutil, W.; Mautner, B.; Liese,
A.; Tetrahedron: Asymmetry 2008, 19, 1171.
References
1. For some examples, see: Shaw, S.-Y.; Chen,Y.-J.; Ou, J.-J.; Ho,
L.; Enzyme Microb. Technol. 2006, 39, 1089; Palomo, J. M.;
Segura, R. L.; Fernandez-Lorente, G.; Fernandez-Lafuente,
R.; Guisan, J. M.; Enzyme Microb. Technol. 2007, 40, 704;
Fernandez, R. E.; Bhattacharya, E.; Chadha,A.; Appl. Surf. Sci.
2008, 254, 4512; da Silva V. C. F.; Contesini F. J.; Carvalho P.
O. J. Braz. Chem. Soc. 2008, 19, 1468.
11. Yu,J.;Wang,C.;Hong,J.;Huang,J.;J.Macromol.Sci.,PartA:Pure
Appl. Chem. 2009, 46, 943; Hong, J.; Gong, P.-J.;Yu, J.-H.; Xu,
D.-M.;Sun, H.-W.;Yao, S.;J. Mol. Catal. B:Enzym. 2006, 42, 99.
12. Wang, W.; Xu, Y.; Wang, D. I. C.; Li, Z.; J. Am. Chem. Soc.
2009, 131, 12892.