3
Scheme 2. Silver (I) catalyzed azide–alkyne cycloaddition
reaction.
Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.;
Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43,
9
1
53–970; (e) Hawker, C. J.; Wooley, K. L. Science 2005, 309,
200–1205. (f) Wacharasindhu, S.; Bardhan, S.; Wan, Z.-K.;
A plausible mechanistic cycle involving AgN(CN)
2
as catalyst
Tabei, K.; Mansour, T. S. J. Am. Chem. Soc. 2009, 131, 4174-
4175; f) Liu, Y. X.; Yan, W. M.; Chen, Y. F.; Petersen, J. L.;
Shi, X. D. Org. Lett. 2008, 10, 5389–5392; (g) Tron, G. C.;
Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.;
Genazzani, A. A. Med. Res. Rev. 2008, 28, 278–308; (h) Lauria,
A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone,
G.; Almerico, A. M. Eur. J. Org. Chem. 2014, 3289-3306; (i) Li,
S.; Huang, Y. Curr. Med. Chem. 2014, 21, 113-123; (j)
Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am. Chem. Soc.
is depict in Scheme 3. Since the tertiary amine functions as both
18
a ligand and a base in CuAAC reactions, here DIPEA
contribute a same role in the intermediate step. We propose that
the catalytic cycle begins with the formation of silver phenyl
acetylide by DIPEA and then DIPEA act as a ligand to give A.
Nucleophilic attack on A by the azide generates B and the
process proceed through the pathway commonly accepted for this
transformation to form a transient silver metallacycle shown as
2
013, 135, 4652–4655; (k) Spangler, J. E.; Davies, H. M. L. J.
9b
C. Subsequent migration of nitrogen to carbon and protonation
leads to the formation of triazole. The observed regioselectivity is
due to a probable steric effect where the methyl groups of
isopropyl unit of DIPEA efficiently protect one side of the silver
metal, thereby blocking the cycloaddition to give up the sterically
more crowded 1,5- disubstituted product.
Am. Chem. Soc. 2013, 135, 6802–6805; (l) Zibinsky, M.; Fokin,
V.V. Angew. Chem. 2013, 125, 1547–1550; Angew. Chem. Int.
Ed. 2013, 52, 1507–1510; (m) Donnelly, K. F.; Petronilho, A.;
Albrecht, M. Chem. Commun. 2013, 49, 1145–1159; (n) Johnson,
T. C.; Totty, W. G.; Wills, M. Org. Lett. 2012, 14, 5230–5233;
(
o) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan,
V. Chem. Rev. 2013, 113, 3084–3213; (p) Chattopadhyay, B.;
Gevorgyan, V. Angew. Chem. 2012, 124, 886–896; Angew.
Chem. Int. Ed. 2012, 51, 862–872.
N
2.
(a) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J.
R'
N
N
2
011, 6, 2696 – 2718; (b) Soltis, M. J.; Yeh, H. J.; Cole, K. A.;
H
R
R
AgN(CN)2
Whittaker, N.; Wersto. R. P.; Kohn, E. C. Drug Metab. Dispos.
1
2
996, 24, 799 – 806; (c) Sheng, C. Zhang, W. Curr. Med. Chem.
011, 18, 733 –766.
NH(CN)2
3
4
.
.
Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.,
Ed.; Wiley: New York, 1984; pp 1–176.
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. 2002, 114, 2708–2711; Angew. Chem. Int. Ed.
N
R'
H
R
N
N
AgN(CN)2
R
Ag
i
N
Pr EtN
2
2
002, 41, 2596–2599.
Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.Chem. 2002,
7, 3057–3064.
5
6
7
.
.
.
NH(CN)2
N
6
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int.Ed.
2001, 40, 2004–2021.
R'
R
Ag
R'
N
N
N
A
(a) Thirumurugan, P.; Matosiuk, D.;
Jozwiak, K. Chem. Rev.
Ag
R
N
2013, 113, 4905–4979; b) Jewett, J. C.; Bertozzi, C. R. Chem.
Soc. Rev. 2010, 39, 1272–1279; (c) Debets, M. F.; Berkel, S. S.
van; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. J. T.; Delft, F.
L. van Acc. Chem. Res. 2011, 44, 805–815; (d) Mamidyala, S.
K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252–1261; (e) Golas,
P. L.; Matyjaszewski, K. Chem. Soc. Rev. 2010, 39, 1338–1354;
R'
N
N
N
N N
C
N
R
Ag N
(
2
f) Qin, A.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2010, 39,
522–2544.
B
8
9
.
.
(a) Silvestri, I. P.; Andemarian, F.; Khairallah, G. N.; Yap, S.
W.; Quach, T.; Tsegay, S.; Williams, C. M.; O’ Hair, R. A. R.;
Donnelly, P. S.; Williams, S. J. Org. Biomol. Chem. 2011, 9,
6082–6088; (b) Aucagne, V.; Leigh, D. A. Org. Lett. 2006, 8,
Scheme 3. Proposed catalytic cycle for the Ag(I)-catalyzed AAC
reaction.
4
505–4507.
In summary, a simple and efficient method was effectively
developed for synthesizing 1,4-disubstituted 1,2,3-triazoles using
AgN(CN) /DIPEA as catalyst in H O/ethylene glycol at room
2 2
temperature without the exclusion of air. The ease and efficiency
of this catalyst system has been successfully demonstrated and
we envision that this procedure may release exciting perspectives
for use in various synthetic applications.
(a) McNulty, J.; Keskar, K.; Vemula, R. Chem. Eur. J. 2011, 17,
14727–14730; (b) McNulty, J.; Keskar, K. Eur. J. Org. Chem.,
2012, 5462–5470; (c) Ortega-Arizmendi, A. I.; Aldeco-Perez, E.;
Cuevas-Yanez, E. The Scientific World 2013, 2013, 186537; (d)
Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.; Jana, N. R.;
Islam, S. M. RSC Adv. 2014, 4, 10001–10012.
1
1
0. (a) Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109–
1052; (b) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem.
Soc. 2003, 125, 4686–4687.
1. Jewetta, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272–
1279.
Acknowledgement
DS is thankful to CSIR, New Delhi for a research grant [No.
12. Partyka, D. V.; Gao, L.; Teets, T. S.; Updegraff III, J. B.;
Deligonul, N.; Gray, T. G. Organometallics 2009, 28, 6171–
6
02(0154)/13/EMR-II]. The authors also acknowledge the De-
182.
3. Zhou, Y.; Lecourt, T.; Micouin, L. Angew. Chem. 2010, 122,
661 – 2664; Angew. Chem. Int. Ed. 2010, 49, 2607–2610.
partment of Science and Technology for financial assistance
under DST-FIST Programme and UGC, New Delhi for Special
Assistance Programme (UGC-SAP) to the Department of
Chemistry, Dibrugarh University.
1
2
14. (a) Nezhad, A. K.; Panahi, F. Green Chem. 2011, 13, 2408–
2415;( b) Modak, A.; Mondal, J.; Sasidharanb, M.; Bhaumik, A.
Green Chem. 2011, 13, 1317–1331; (c) Mao, S.-L.; Sun, Y.; Yu,
G.-A.; Zhao, C.; Han, Z.-J.; Yuan, J.; Zhu, X.; Yang, Q.; Liu,
S.-H. Org. Biomol. Chem. 2012, 10, 9410–9417; (d) Sarma, D;
Kumar, A. Org. Lett. 2006, 8, 2199-2202. (e) Sarma, D.; Pawar,
S.; Deshpande, S.; Kumar, A., Tetrahedron Lett. 2006, 47, 3957-
3958. (d) Blackmond, D. G.; Armstrong, A.; Coombe, V.; Wells,
A. Angew. Chem. Int. Ed. 2007, 46, 3798 – 3800.
References and notes:
1
.
(a) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today, 2003, 8,
1
2
2
128–1137; (b) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev.
007, 36, 1249–1262; (c) Finn, M. G.; Fokin, V. V. Chem. Rev.
010, 39, 1231–1232; (d) Genin, M. J.; Allwine, D. A.; Anderson,
15. (a) Batten, S. R.; Murray, K. S. Coord. Chem. Rev. 2003,
246,103–130; (b) Turner, D. R.; Chesman, A. S. R.; Murray, K.;
Deacon, G. B.; Batten, S. R. Chem. Commun.2011, 47, 10189–
D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber,
D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.;