Journal of the American Chemical Society
Communication
(2) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
(3) For a review, see: Norberg, A. M.; Sanchez, L.; Maleczka, R. E., Jr.
Curr. Opin. Drug Discovery Dev. 2008, 11, 853.
(4) Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.
(5) Huth, A.; Beetz, I.; Schumann, I. Tetrahedron 1989, 45, 6679.
(6) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 11818.
(7) Darses, S.; Jeffery, T.; Genet, J.-P.; Brayer, J.-L.; Demoute, J.-P.
Tetrahedron Lett. 1996, 37, 3857.
(8) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979.
(9)Blakey, S. B.;MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046.
(10) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128,
15964.
from the Pd but the F atom interacts with the Pd and
simultaneously with the PhB(OH)2 moiety. This reaction occurs
with the ΔG°‡ of 25.2 kcal mol−1 to afford Pd(II)(Ph)-
(C6H4OMe-p)(BrettPhos) 50 and Cs(NO2){FB(OH)2} 49.
Transmetalation via Pd(II)(Ar)(F)(BrettPhos),33 the formation
of which is estimated to be endergonic, cannot be ruled out
(Figure S7). The reductive elimination of the biaryl product
occurs with a moderate ΔG0‡ value. The oxidative addition of the
Ar−NO2 bond can be rate-determining, and the nitrobenzene π-
complex 44 can be a resting state. CsF activates the B−Ph bond
and also plays a crucial role to accept the NO2 anion which
dissociates from the Pd(II) center in the reaction. K3PO4 also
could play similar roles.
(11) Tobisu, M.;Shimasaki, T.;Chatani, N. Angew. Chem., Int. Ed. 2008,
47, 4866.
Nitro groups on halogenated benzene rings enable the
introduction of a range of substituents via nucleophilic aromatic
substitution reactions (SNAr) at their ortho- and/or para-
positions. H-atoms can also be substituted by vicarious
nucleophilic substitution (VNS) reactions34 and ortho direct
arylation,35 which render nitroarenes a highly attractive platform
to access a variety of substituted benzenes (Scheme S1).
The nitroarene-based SMC protocol developed herein delivers
a range of biaryls from readily available arene feedstocks and
should have the potential to substantially impact conventional
chemical processes for the generation of functional biaryls.
Mechanistically, the oxidative addition of the Ar−NO2 bond may
implicate new opportunities for further developments of C−NO2
bond functionalizations, as well as other Pd-catalyzed coupling
processes.
(12) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem.
Soc. 2008, 130, 14468.
(13) Yu, D.-G.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 7097.
(14) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun.
2015, 6, 7508.
(15) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New
York, 2001.
(16) Smith, M. B.; March, J. March’s Advanced Organic Chemistry, 5th
ed.; John Wiley & Sons, Inc.: New York, 2001.
(17)(a)Booth,G. NitroCompounds, Aromatic;Ullmann’sEncyclopedia
of Industrial Chemistry; Wiley-VCH: New York, 2012. (b) Zhang, J.;
Chen, J.; Liu, M.; Zheng, X.; Ding, J.; Wu, H. Green Chem. 2012, 14, 912.
(18) Zhang, J.; Chen, J.; Liu, M.; Zheng, X.; Ding, J.; Wu, H. Green
Chem. 2012, 14, 912.
(19) Zheng, X.; Ding, J.; Chen, J.; Gao, W.; Liu, M.; Wu, H. Org. Lett.
2011, 13, 1726.
(20) Bahekar, S. S.; Sarkate, A. P.; Wadhai, V. M.; Wakte, P. S.; Shinde,
D. B. Catal. Commun. 2013, 41, 123.
(21) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2008, 130, 13552.
(22) Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiang, W.; Andrus, M. B.
Tetrahedron 2005, 61, 7438.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
S
Crystallographic data for 41 (CIF)
Crystallographic data for 42 (CIF)
Detailed experimental procedures including spectroscopic
and analytical data (PDF)
(23) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(24) Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ,
M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
(25) Bruno, N. C.; Buchwald, S. L. The Strem Chemiker XXVII; Strem
Chemicals, Inc.: MA, 2014. Residual carbazole could affect the reaction
(26) Walker, S. D.; Borths, C. J.; DiVirgilio, E.; Huang, L.; Liu, P.;
Morrison, H.; Sugi, K.; Tanaka, M.; Woo, J. C. S.; Faul, M. M. Org. Process
Res. Dev. 2011, 15, 570.
(27) Tamura, R.; Hegedus, L. S. J. Am. Chem. Soc. 1982, 104, 3727.
(28) Ono, N.; Yanai, T.; Kaji, A. J. Chem. Soc., Chem. Commun. 1986,
1040.
AUTHOR INFORMATION
Corresponding Authors
ORCID
■
(29) Trzcinska-Bancroft, B.; Khan, M. N. I.; Fackler, J. P. Organo-
metallics 1988, 7, 993.
(30) (a) Saito, S.; Koizumi, Y. Tetrahedron Lett. 2005, 46, 4715.
(b) Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 12898.
(31)FortheNMRanalyses, theintermediate wasalternativelyprepared
by the reaction of BrettPhos Pd G3 with nitrobenzene and nBuLi.
(32) The intermediate decomposed under reduced pressure due
possibly to the decoordination of the nitrobenzene ligand from Pd.
(33) (a) Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-
Jones, G. C.; Murray, P. M. Angew. Chem., Int. Ed. 2010, 49, 5156.
(b) Amatore, C.; Jutand, A.; Le Duc, G. Chem. - Eur. J. 2011, 17, 2492.
(c) Amatore, C.; Jutand, A.; Le Duc, G. Angew. Chem., Int. Ed. 2012, 51,
1379.
Author Contributions
∥M.R.Y. and M.N. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the “JST CREST program Grant
Number JPMJCR14L3 in Establishment of Molecular Technol-
ogy towards the Creation of New Functions” and by the “JSPS
KAKENHI Grant Number JP15H05799 in Precisely Designed
Catalysts with Customized Scaffolding”. We thank Dr. H. Eguchi
of Tosoh Corporation for helpful discussions.
(34) Makosza, M.; Winiarski, J. Acc. Chem. Res. 1987, 20, 282.
(35) Caron, L.; Campeau, L.-C.; Fagnou, K. Org. Lett. 2008, 10, 4533.
REFERENCES
■
(1) Miyaura, N. Cross-Coupling ReactionsA Practical Guide; Springer:
Berlin, 2002.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX