C O M M U N I C A T I O N S
the increased efficiency of electron-rich species, as they could
the Canada Research Chair Program, the Canada Foundation for
Innovation, and the Universit e´ de Montr e´ al. J.J.M. is grateful to
FQRNT for a doctoral scholarship.
15
stabilize radical intermediates, providing a positive ꢀ-effect. This
may explain the preference for o-substitution in toluene, due to
the formation of a tertiary radical stabilized though additional
hyperconjugation. In addition, the observed ratios are consistent
Supporting Information Available: Experimental procedures,
sample spectra, and compound characterization data. This material is
available free of charge via the Internet at http://pubs.acs.org.
1
5
with aryl radical substitutions onto toluene.
a
Table 4. Direct Arylation in Presence of Fe and AIBN
References
(
(
(
1) Evans, D. A.; Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson,
T. I.; Trotter, B. W.; Katz, J. L. Angew. Chem., Int. Ed. 1998, 37, 2704.
2) (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
ReV. 2002, 102, 1359. (b) Laird, T. Org. Process Res. DeV. 2006, 10, 851.
3) For an overview, see: Lehn, J.-M. Science 2002, 295, 2400.
b
(4) For an example, see: Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz,
entry
catalyst
ligand
KOt-Bu
yield (%)
M. Angew. Chem., Int. Ed. 2000, 39, 233.
(
(
5) For discussion, see: (a) Sezen, B.; Sames, D. In Handbook of C-H
Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005; pp 3-
1
2
3
4
Fe(OAc)
none
AIBN
Fe(OAc)
2
10 mol %
10 mol %
none
2 equiv
2 equiv
2 equiv
none
91
0
17
0
1
0.
6) For selected reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174. (b) Miura, M.; Satoh, T. Top. Organomet. Chem.
2
+ AIBN
10 mol %
2
005, 14, 55. (c) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. (d)
a
Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253. (e) Seregin, I. Y.;
Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (f) Ellman, J. Science
Reaction conditions: 1 (1 equiv), benzene (100 equiv), cat. (5 mol
), bathophenanthroline (10 mol %), KOt-Bu (2 equiv), 80 °C, 20 h.
%
2
007, 316, 1131.
b
Yield determined by GCMS analysis using an internal standard.
(
(
7) (a) Proch, S.; Kempe, R. Angew. Chem., Int. Ed. 2007, 46, 3135. (b)
Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (c)
Ackermann, L.; Nov a` k, P.; Vicente, R.; Hofmann, N. Angew. Chem., Int.
Ed. 2009, 48, 6045. (d) Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem.
Soc. 2009, 131, 12070.
8) (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (b) Cai, Q.; Zou,
B.; Ma, D. Angew. Chem., Int. Ed. 2006, 45, 1276. (c) Li, Z.; Yu, R.; Li,
H. Angew. Chem., Int. Ed. 2008, 47, 7497. (d) Czaplik, W. M.; Mayer,
M.; von Wangelin, A. J. Angew. Chem., Int. Ed. 2009, 48, 607. (e) Do,
H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (f) Do, H.-Q.;
Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (g) Kobayashi, O.;
Uraguchi, D.; Yamakawa, T. Org. Lett. 2008, 10, 4673.
(
9) (a) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem.
Soc. 2008, 130, 5858. (b) Yoshikai, N.; Matsumoto, A.; Norinder, J.;
Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925.
(
10) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. ReV. 2004, 104, 6217.
(b) F u¨ rstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. (c) Iron Catalysis
in Organic Chemistry: Reactions and Applications; Plietker, B., Ed.; Wiley-
VCH: Weinheim, 2008. (d) Correa, A.; Manche n˜ o, O. G.; Bolm, C. Chem.
Soc. ReV. 2008, 37, 1108. (e) Sherry, B. D.; F u¨ rstner, A. Acc. Chem. Res.
Figure 2. Proposed catalytic cycle.
2
008, 41, 1500. (f) Sarhan, A. A. O.; Bolm, C. Chem. Soc. ReV. 2009, 38,
2
730.
(
(
11) (a) Bistri, O.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586.
In summary, we have demonstrated that the inexpensive and
environmentally friendly catalytic system composed of Fe(OAc)
(
b) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
2
(c) F u¨ rstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609. (d)
F u¨ rstner, A.; Leitner, A.; Mendez, M. J. Am. Chem. Soc. 2002, 124, 13856.
and bathophenanthroline is highly effective for the synthesis of
biaryl compounds. Mechanistic evidence suggests that the trans-
formation proceeds through an Fe-catalyzed radical process giving
a metal-catalyzed radical living direct arylation. This novel process
constitutes a powerful and practical direct arylation protocol under
mild conditions. Work is ongoing to determine the full extent of
these reactions as well as a detailed mechanistic analysis of the
process.
(
e) F u¨ rstner, A.; Krause, H.; Lehmann, C. W. Angew. Chem., Int. Ed. 2006,
45, 440.
12) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem., Int. Ed.
2
008, 47, 8897.
17
(13) For optimization tables, see Supporting Information.
(
(
14) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.
15) Anslyn, E. V.; Doughtery, D. A. Modern Physical Organic Chemistry;
University Science Books: Sausalito, CA, 2006.
(
16) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10,
4
673.
(
17) (a) Matyjaszewski, K.; Xia, J. Chem. ReV. 2001, 101, 2921. (b) Kamigaito,
M.; Ando, T.; Sawamoto, M. Chem. ReV. 2001, 101, 3689. (c) Xue, Z.;
Linh, N. T. B.; Noh, S. K.; Lyoo, W. S. Angew. Chem., Int. Ed. 2008, 47,
Acknowledgment. This work was supported by the Natural
Science and Engineering Research Council of Canada (NSERC),
Merck Frosst Canada Ltd., Boehringer Ingelheim (Canada), Ltd.,
6
426.
JA910687U
1
516 J. AM. CHEM. SOC. 9 VOL. 132, NO. 5, 2010