461-465.
[12] Y.-B. Dong, M.D. Smith, H.-C. zur Loye, Synthesis and characterization of a novel
copper(II)-silver(I) mixed-metal coordination polymer: Ag[Cu(2-pyrazinecarboxylate)2] (H2O) (NO3),
Solid State Sciences, 2 (2000) 335-341.
[13] Y.-B. Dong, M.D. Smith, H.-C. zur Loye, [Cu(2-pyrazinecarboxylato)2HgI2]HgI2: An Open
Noninterpenetrating CuII–HgII Mixed-Metal Cuboidal Framework Encapsulating Nearly Linear HgI2
Guest Molecules, Angew. Chem., Int. Ed., 39 (2000) 4271-4273.
[14] Y.-B. Dong, M.D. Smith, H.-C. zur Loye, Novel M(II)-Hg(II) coordination polymers generated
from metal-containing building blocks M(2-pyrazinecarboxylate)22(H2O)2 (M=Cu, Ni, Co) and HgCl2,
Solid State Sciences, 2 (2000) 861-870.
[15] V.D. Vreshch, A.B. Lysenko, A.N. Chernega, J. Sieler, K.V. Domasevitch, Heterobimetallic
Cd(Zn)/Be coordination polymers involving pyridyl functionalized beryllium diketonates, Polyhedron,
24 (2005) 917-926.
[16] H.-B. Wu, Q.-M. Wang, Construction of Heterometallic Cages with Tripodal Metalloligands,
Angew. Chem., Int. Ed., 48 (2009) 7343-7345.
[17] L. Carlucci, G. Ciani, D.M. Proserpio, M. Visconti, The novel metalloligand [Fe(bppd)3] (bppd =
1,3-bis(4-pyridyl)-1,3-propanedionate) for the crystal engineering of heterometallic coordination
networks with different silver salts. Anionic control of the structures, CrystEngComm, 13 (2011)
5891-5902.
[18] B. Chen, F.R. Fronczek, A.W. Maverick, Porous Cu-Cd Mixed-Metal-Organic Frameworks
Constructed from Cu(Pyac)2 {Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)}, Inorg. Chem., 43
(2004) 8209-8211.
[19] V.D. Vreshch, A.N. Chernega, J.A.K. Howard, J. Sieler, K.V. Domasevitch, Two-step construction
of molecular and polymeric mixed-metal Cu(Co)/Be complexes employing functionality of a pyridyl
substituted acetylacetonate, Dalton Trans., (2003) 1707-1711.
[20] Y. Zhang, B. Chen, F.R. Fronczek, A.W. Maverick, A Nanoporous Ag-Fe Mixed-Metal-Organic
Framework Exhibiting Single-Crystal-to-Single-Crystal Transformations upon Guest Exchange, Inorg.
Chem., 47 (2008) 4433-4435.
[21] V.D. Vreshch, A.B. Lysenko, A.N. Chernega, J.A.K. Howard, H. Krautscheid, J. Sieler, K.V.
Domasevitch, Extended coordination frameworks incorporating heterobimetallic squares, Dalton Trans.,
(2004) 2899-2903.
[22] D.-J. Li, L.-Q. Mo, Q.-M. Wang, Heterometallic coordination polymers generated from tripodal
metalloligands, Inorg. Chem. Commun., 14 (2011) 1128-1131.
[23] A. Pariyar, H. Yaghoobnejad Asl, A. Choudhury, Tetragonal versus Hexagonal:
Structure-Dependent Catalytic Activity of Co/Zn Bimetallic Metal–Organic Frameworks, Inorg. Chem.,
55 (2016) 9250-9257.
[24] G. Kumar, R. Gupta, Three-Dimensional {Co3+–Zn2+} and {Co3+–Cd2+} Networks Originated
from Carboxylate-rich Building Blocks: Syntheses, Structures, and Heterogeneous Catalysis, Inorg.
Chem., 52 (2013) 10773-10787.
[25] D.M. Hodgson, A.R. Gibbs, G.P. Lee, Enantioselective desymmetrisation of achiral epoxides,
Tetrahedron, 52 (1996) 14361-14384.
[26] D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino Alcohols and Their Heterocyclic Derivatives as
Chiral Auxiliaries in Asymmetric Synthesis, Chem. Rev., 96 (1996) 835-876.
[27] D.B.G. Williams, A. Cullen, Al(OTf)3-Mediated Epoxide Ring-Opening Reactions: Toward
21