E. Erdik, Ö. Ömür Pekel / Tetrahedron Letters 50 (2009) 1501–1503
1503
P. J. Org. Chem. 2002, 67, 79–85; (j) Soorukram, D.; Knochel, P. Org. Lett. 2004, 6,
2409–2411.
4. Erdik, E.; Ömür Pekel, Ö. J. Organomet. Chem. 2008, 693, 338–342.
5. Dieter, R. K. Tetrahedron 1999, 55, 4177–4236.
6. (a) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim,
2001; (b) Organocopper Reagents. A Practical Approach; Taylor, R. J. K., Ed.;
Oxford University Press, 1994.
Depending on the formation of acyl n-butylphosphonium ions
as acylating reagents,10a we propose a possible sequence of reac-
tions that enables n-Bu3P to function in a catalytic mode for the
n-Bu3P-catalyzed chemoselective acylation of n-alkyl phenylzincs
to give n-alkyl ketones (Scheme 1).
In conclusion, we have shown that selective acylation of n-alkyl
groups in n-Bu3P-catalyzed reactions of mixed n-alkyl phenylzincs
reagents with aromatic acyl halides in THF is an efficient method
for the synthesis of n-alkyl arylketones.13 This route provides a sim-
ple and atom economic alternative to transition metal-catalyzed
acylation of di n-alkylzinc reagents. Further studies concerning the
functional group selectivity of mixed diorganozincs in acylation
and C–C and C–heteroatom coupling reactions are underway.
7. Wakefield, B. J. Organolithium Methods in Organic Synthesis; Academic: London,
1990.
8. (a) Wakefield, B. J. Organomagnesium Methods in Organic Synthesis; Academic:
London, 1995; (b)Handbook of Grignard Reagents; Silverman, G. S., Rakita, P. E.,
Eds.; Marcel Dekker: New York, 1996.
9. (a) Fillon, H.; Gosmini, C.; Perichon, J. Tetrahedron 2003, 41, 8199–8202; (b)
Karzmierski, I.; Bastienne, M.; Gosmini, C.; Paris, J. M.; Perichon, J. J. Org. Chem.
2004, 69, 936–942. and references cited therein; (c) Xu, H.; Ekoue-Rovi, K.;
Wolf, C. J. Org. Chem. 2008, 73, 7638–7650.
10. (a) Maeda, H.; Okamoto, J.; Ohmari, H. Tetrahedron Lett. 1996, 37, 5381–5384;
(b) Wang, X.-J.; Zhang, L.; Sun, X.; Xu, Y.; Krishnamurty, D.; Senanayake, C. H.
Org. Lett. 2005, 7, 5593–5595.
Acknowledgement
11. (a) Yang, C. X.; Patel, H. H.; Ku, Y. Y.; Shah, R.; Sawick, D. Synth. Commun. 1997,
27, 2125–2132; (b) Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka, M.;
Nishida, A.; Nakagawa, M. J. Org. Chem. 1997, 62, 4237–4239.
12. Dieter, R. K.; Sharma, R. R.; Yu, H.; Gore, V. K. Tetrahedron 2003, 59, 1083–1094.
13. Typical procedure for the acylation of n-alkyl phenylzincs: All reactions were
carried out in oven-dried glassware under a positive pressure of nitrogen using
standard syringe-septum cap techniques. GC analyses were performed on a
Thermo Finnigan gas chromatograph equipped with a ZB-5 capillary column
packed with phenylpolysiloxane using the internal standard technique.14
Phenylzinc chloride was prepared by addition of 1 equiv of phenylmagnesium
bromide to a solution of 1 equiv of ZnCl2 in THF at ꢀ20 °C and stirring at that
temperature for 15 min. 4-Acetoxy-1-butylzinc chloride was prepared by
direct LiCl promoted insertion of Zn into 4-acetoxy-1-iodobutane.15 A two-
necked flame-dried flask was charged with ZnCl2 (10 mmol) in THF (10 ml) and
cooled to ꢀ20 °C. Phenylmagnesium bromide (10 mmol) was added at ꢀ20 °C
with stirring. To freshly prepared phenylzinc chloride, n-alkylmagnesium
bromide (10 mmol) was added and the mixture was stirred at that
temperature for 15 min. For the preparation of mixed 4-acetoxy-1-butyl
phenylzinc, 4-acetoxy-1-butylzinc chloride was mixed with phenylmagnesium
bromide. To the mixed n-alkyl phenylzinc and n-Bu3P (1 mmol, 0.2 ml), acyl
halide (10 mmol) was added dropwise and the reaction mixture was stirred at
room temperature for 1 h. The mixture was hydrolyzed by addition of 1M HCl
and subsequently extracted with Et2O. The combined ethereal solutions were
washed with aq NaHCO3 solution, dried, concentrated by rotary evaporation
and subjected to silica gel column chromatography with hexane:EtOAc (1:1) as
eluent to give n-alkyl aryl ketones. 1H NMR spectroscopic data of the acylation
products of selected reactions.
We thank Turkish Scientific and Technical Research Council,
Grant No. TBAG 106T644 for the financial support.
References and notes
1. (a) Erdik, E. Organozinc Reagents in Organic Synthesis; CRC: New York, 1996;
(b)Organozinc Reagents. A Practical Approach; Knochel, P., Jones, P., Eds.; Oxford
University: Oxford, 1999. Chapater 5; (c) Patai’s The Chemistry of Organozinc
Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, 2007;
(d)Functionalized Organometallics; Knochel, P., Ed.; Wiley-VCH: Weinheim,
2005.
2. (a) Laloe, E.; Srebnik, W. Tetrahedron Lett. 1994, 35, 5587–5591; (b) Johnson, J.
B.; Yu, P.; Fink, P.; Bercot, E. A.; Rovis, T. Org. Lett. 2006, 8, 4307–4310; (c) Wipf,
P.; Ribe, S. J. Org. Chem. 1998, 63, 6454–6455; (d) Oppolzer, W.; Radinov, R. N.
Helv. Chim. Acta 1992, 75, 170–173; (e) Lipshutz, B. H.; Randall, W. V.
Tetrahedron Lett. 1999, 40, 2871–2874; (f) Hupe, E.; Knochel, P. Org. Lett.
2001, 3, 127–130; (g) Bolm, C.; Herman, N.; Hildebrand, J. P.; Muniz, K. Angew.
Chem., Int. Ed. 2000, 29, 3465–3467; (h) Özçubukçu, S.; Schmidt, F.; Bolm, C.
Org. Lett. 2005, 7, 1407–1409; (i) Rudolph, J.; Bolm, C.; Norby, P. O. J. Am. Chem.
Soc. 2005, 127, 1548–1552; (j) Rudolph, J.; Rasmussen, T.; Bolm, C.; Norby, P. O.
Angew. Chem., Int. Ed. 2003, 42, 3002–3005; (k) Fontes, M.; Verdaguer, X.; Sola,
L.; Pericas, M. A.; Riera, A. J. Org. Chem. 2004, 69, 2532–2543; (l) Schinnerl, M.;
Seitz, M.; Kaiser, A.; Reiser, O. Org. Lett. 2001, 3, 4259–4262; (m) Kim, J. G.;
Walsh, P. H. Angew. Chem., Int. Ed. 2006, 45, 4175–4178; (n) Oppolzer, W.;
Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593–1594; (o) Srebnik, M.
Tetrahedron Lett. 1991, 32, 2449–2451; (p) Niwa, S.; Soai, K. J. J. Chem. Soc.,
Perkin Trans. 1 1990, 937–943.
3. (a) Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. Angew.
Chem. Int. Ed. 1997, 36, 1496–1498; (b) Lutz, C.; Jones, P.; Knochel, P. Synthesis
1999, 312–316; (c) Lutz, C.; Knochel, P. J. Org. Chem. 1997, 62, 7895–7898; (d)
Trawerse, J. F.; Hoveyda, A. N.; Snapper, M. Org. Lett. 2003, 5, 3273–3275; (e)
Jones, P.; Knochel, P. J. Chem. Soc., Perkin Trans. 1 1997, 3117–3118; (f) Jones, P.;
Reddy, C. K.; Knochel, P. Tetrahedron 1998, 54, 1471–1490; (g) Reddy, C. K.;
Devasagayaray, A.; Knochel, P. Tetrahedron Lett. 1996, 37, 4495–4498; (h)
Rimkus, A.; Sewald, N. Org. Lett. 2002, 4, 3289–3291; (i) Jensen, A. E.; Knochel,
(Table 1, entry 2) 1H NMR (400 MHz ,CDCl3) d: 0.88 (t, 3H, J = 7.2 Hz), 1.26–1.36
(m, 8H), 1.74 (m, 2H), 2.95 (t, 2H, J = 7.2 Hz), 7.43–7.47 (m, 2H), 7.52–7.56 (m,
1H), 7.94–7.96 (m, 2H).
(Table 1, entry 5) 1H NMR (400 MHz, CDCl3) d: 1.43 (m, 4H), 1.75 (m, 4H), 2.97
(t, 4H, J = 7.2 Hz), 7.45 (m, 4H), 7.55 (m, 2H), 7.95 (dd, 4H, J = 7.6 Hz, J = 1.4 Hz).
(Table 1, entry 6) 1H NMR (400 MHz, CDCl3) d: 1.70–1.84 (m, 4H), 2.03 (s, 3H),
3.01 (t, 2H, J = 7.2 Hz), 4.01 (t, 2H, J = 7.2 Hz), 7.45 (m, 2H), 7.55 (m, 1H); 7.95
(m, 2H).
14. Leonard, J.; Lygo, B.; Procter, G. Advanced Practical Organic Chemistry; Blackie:
London, 1995.
15. Krocsovsky, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed.
2006, 45, 6040–6044.