Journal of the American Chemical Society
COMMUNICATION
combined DRIFTS/MS/XAS measurements for probing complex
reaction networks also paves the way for related vapor-phase fine-
chemicals catalysis studies within this milieu.
’
ASSOCIATED CONTENT
S
Supporting Information. Catalyst synthesis, characteri-
b
zation and reaction conditions. This material is available free of
charge via the Internet at http://pubs.acs.org.
’
AUTHOR INFORMATION
Corresponding Author
leeaf@cardiff.ac.uk
’
ACKNOWLEDGMENT
We thank the EPSRC (EP/E046754/1, EP/G007594/2) for finan-
cial support, a Leadership Fellowship (A.F.L.), and studentship
support (C.V.E., J.N.N., and C.M.A.P.) and the ESRF for
beamtime (CH2432). A.F.L. thanks Miss Carly J. Broderick for
invaluable support.
Figure 5. Switchover from selective to partial CrOH oxidation to combus-
tion with increasing temperature (conversion). Predicted relationships
2
between CrOH and O conversion for selective oxidative dehydrogenation
(green b) and total combustion (red b) are also shown.
’
REFERENCES
Scheme 1. Proposed Reaction Network Interrelating Nano-
particulate Catalyst Phase (Oxidation State) and Associated
Selectivity toward CrOH Oxidation upon the Surrounding
Reducing or Oxidizing Reactant Feedstream
(
(
1) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
2) Meenakshisundaram, S.; Nowicka, E.; Miedziak, P. J.; Brett,
G. L.; Jenkins, R. L.; Dimitratos, N.; Taylor, S. H.; Knight, D. W.; Bethell,
D.; Hutchings, G. J. Faraday Discuss. 2010, 145, 341.
(3) Vinod, C. P.; Wilson, K.; Lee, A. F. J. Chem. Technol. Biotechnol.
2
011, 86, 161.
(
(
4) ten Brink, G. J.; Arends, I.; Sheldon, R. A. Science 2000, 287, 1636.
5) Sheldon, R. A.; Arends, I.; Hanefeld, U. In Green Chemistry and
Catalysis; Wiley-VCH: Weinheim, Germany, 2007.
6) Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Chem. Soc. Rev.
008, 37, 2077.
7) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am.
Chem. Soc. 2004, 126, 10657.
8) Hackett, S. E. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman,
A. D.; Wilson, K.; Lee, A. F. Angew. Chem., Int. Ed. 2007, 46, 8593.
9) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
(
2
(
(
(
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.;
Hutchings, G. J. Science 2006, 311, 362.
(
10) Bianchi, C. L.; Biella, S.; Gervasini, A.; Prati, L.; Rossi, M. Catal.
Lett. 2003, 85, 91.
11) Li, C. L.; Zhang, Q. H.; Wang, Y.; Wan, H. L. Catal. Lett. 2008,
20, 126.
12) Lee, A. F.; Hackett, S. F. J.; Hargreaves, J. S. J.; Wilson, K. Green
Chem. 2006, 8, 549.
(13) Grunwaldt, J. D.; Caravati, M.; Baiker, A. J. Phys. Chem. B 2006,
110, 25586.
(
1
(
mechanism for Pd-catalyzed selox wherein metallic Pd nanopar-
ticles favor CrOH decarbonylation and combustion pathways
2þ
while Pd favors oxidative dehydrogenation to crotonaldehyde
at low temperature, with oxygen insertion to form surface-bound
crotonic acid competing at high temperature. The interdepen-
dence of the reactant environment, catalyst oxidation state, and
surface chemistry above 150 °C is shown in Scheme 1.
We have demonstrated the first application of time-resolved
synchrotron X-ray absorption spectroscopy to simultaneously
follow dynamic nanoparticle surface restructuring and the evolu-
tion of surface and gas-phase products during an organic reaction.
(14) Lee, A. F.; Wilson, K.; Lambert, R. M.; Hubbard, C. P.; Hurley,
R. G.; McCabe, R. W.; Gandhi, H. S. J. Catal. 1999, 184, 491.
(15) Lee, A. F.; Wilson, K. Green Chem. 2004, 6, 37.
(16) Keresszegi, C.; Ferri, D.; Mallat, T.; Baiker, A. J. Phys. Chem. B
2
005, 109, 958.
17) Ferri, D.; Mondelli, C.; Krumeich, F.; Baiker, A. J. Phys. Chem. B
006, 110, 22982.
18) Lee, A. F.; Chang, Z.; Ellis, P.; Hackett, S. F. J.; Wilson, K.
(
2
(
J. Phys. Chem. C 2007, 111, 18844.
Surface PdO , not Pd, has been identified as the catalytic species
(19) Naughton, J.; Lee, A. F.; Thompson, S.; Vinod, C. P.; Wilson, K.
Phys. Chem. Chem. Phys. 2010, 12, 2670.
x
responsible for the selective oxidation of CrOH to croto-
naldehyde. Elevated reaction temperatures facilitate reversible
nanoparticle redox processes and concomitant catalytic selectivity
loss in response to reaction conditions. These discoveries highlight
(20) Newton, M. A.;Belver-Coldeira, C.; Martinez-Arias, A.;Fernandez-
Garcia, M. Nat. Mater. 2007, 6, 528.
(
(
(
(
21) Newton, M. A. Top. Catal. 2009, 52, 1410.
22) Salmeron, M.; Schlogl, R. Surf. Sci. Rep. 2008, 63, 169.
23) Chong, T. S.; Tan, S. T.; Fan, W. Y. Chem.—Eur. J. 2006, 12, 5128.
24) Ratajczykowa, I. Surf. Sci. 1975, 48, 549.
the importance of stabilizing surface PdO and minimizing catalyst
x
reducibility in order to achieve high selox yields and will hopefully
aid the future design of Pd-derived selox catalysts. The utility of
5
727
dx.doi.org/10.1021/ja200684f |J. Am. Chem. Soc. 2011, 133, 5724–5727