13. H.-W. Viehrig, K. Popp, R. Rintamaa, Measurement of Dy-
namic Elastic-Plastic Fracture Toughness Parameters using
Various Methods, 10th Congress on Material Testing, Budapest
1991, pp. 201±210.
14. H. J. MacGillivray, V. Grabulov, E. R. Akum, Development of
the D. C. Potential Drop Method for Dynamic J-R curve testing
of Charpy Specimens, Serbian Welding Conference, 1987, p.
1±24.
15. S. Winkler, Magnetische Emission, Ein neues Brucherken-
nungsverfahren, Fraunhofer-Institut fuÈr Werkstoffmechanik
Bericht T 3/88, 1988.
16. S. R. Winkler, Magnetic Emission Detection of Crack Initiation,
Fracture Mechanics: Twenty-first Symposium, ASTM STP
1074, J. P. Gudas, J. A. Joyce and E. M. Hackett, Eds, American
Society for Testing and Materials, Philadelphia, 1990, pp.
178±192.
17. T. Kobayashi, I. Yamamoto, M. Niinomi, Introduction of a New
Dynamic Dracture Toughness Evaluation System, Journal of
Testing and Evaluation, JTEVA, Vol. 21, No. 3, May 1993,
pp. 145±153.
18. Merkblatt DVM 002 (1987) Ermittlung von Rissinitierungs-
werten und Risswiderstandskurven bei Anwendung des J-inte-
grals, Deutscher Verband fuÈr MaterialpruÈfung.
1. The energy absorbed up to the maximum load in instrumen-
ted impact testing can be used for characterising the ductile
initiation toughness of materials, but physically the ductile
initiation occur before this point. This energy is propor-
tional with the real initiation energy, and it is independent
of temperature.
2. The magnetic emission measurement technique has a po-
tential ability to detect the ductile crack initiation as well
applying the field method. This has been proved for
many cases: for V-notched and pre-cracked specimens as
well. But to interpret the magnetic signals sometimes re-
quires the investigation of the fracture surface as well.
To clarify the limitations of this method requires further in-
vestigations.
3. With applying the magnetic emission measurement to
Charpy-V specimens the ductile initiation was observed be-
fore the maximum load, and the initiation energy for the
tested material was obtained between 55% and 65% of
the energy absorbed up to the maximum load.
4. The critical J-integral values determined on the basis of the
magnetic emission signal showed good agreement to those
obtained with stretch zone measurements.
Â
19. L. Toth, Rissbildungs- und Ausbreitungsarbeit hinsichtlich der
Kerbgeometrie von Kerbschlagbiegeversuchen, Publications
of the Technical University for Heavy Industry, Miskolc, Series
C, Machinery, Vol. 34 (1978) pp. 31±47.
20. ASTM E 813-89, Standard Test Method for JIc, A Measure of
Fracture Toughness, ASTM, Philadelphia.
References
21. Gy. B. Lenkey, S. Winkler, On the Applicability of the Magnetic
Emission Technique for the Determination of Ductile Crack
Initiation in Impact Tests, Fatigue and Fracture of Engineering
Materials and Structures, Vol. 20, No. 2 (1997) pp. 143±150.
Â
Â
1. Charpy, G., Note sur l'essai des metaux a la flexion par choc de
Â
Â
barreaux entailles Congres de Budapest (1901).
   Â
 Â
galok KoÈzloÈnye (1915) pp. 3±52.
2. Bartel, J., A bemetszett rudak hajlõto uÈtoÈprobaja Anyagvizs-
Â
22. Gy. B. Lenkey, S. Winkler, Z. Major, I. Levay, Applicability of
È
3. KoÈrber, F., H. A. v. Storp, Uber den Kraftverlauf bei der Schlag-
pruÈfung, Mitt. KWI f. Eisenforschung DuÈsseldorf 7 (1925) 81±
97.
4. Blumenauer, H., WerkstoffpruÈfung von Metallen. VEB
Deutscher Verlag fuÈr Grundstoffindustrie, Leipzig, 1963. pp.
134.
magnetic and electric emission techniques for detecting crack
initiation in impact tests, Proceedings of 11th European Con-
ference on Fracture, Poitiers, September 3±6. 1996, Vol. III,
pp. 1989±1994.
Â
23. Gy. B. Lenkey, S. Winkler, L. Toth, J. B. Blauel, Investigations
on the brittle to ductile fracture behaviour of base metal, weld
metal and HAZ material by instrumented impact testing, Pro-
ceedings of International Conference on Welding Technology,
Materials and Material Testing, Fracture Mechanics and Qual-
ity Management, Vienna, September 22±24. 1997, Vol. 2, pp.
423±432.
Á
Â
5. Pluvinage, G., F. Montariol, Contribution a l'etude des transi-
Â
Â
tions de resilience dans le cas d'un acier doux. Memoires scien-
tifiques de la Revue de Metallurgie, LXV, No 4 (1968) pp.
297±308.
Â
6. Konkoly, T., EroÈ -idoÈ diagramok felvetele egyszeroÈ Charpy uÈtoÈ-
moÈvoÈn az ingara szerelt nyulasmeroÈ belyegekkel. Gep (1968)
Â
 Â
Â
Â
Â
24. Gy. B. Lenkey, On the Determination of Dynamic Fracture
Toughness Properties by Instrumented Impact Testing, Pendu-
lum Impact Testing: A Century of Progress, ASTM STP 1280,
T. Siewert and M. P. Manahan, Sr., Eds., American Society for
Testing and Materials, West Conshohocken, PA, 1999, pp.
366±381.
25. Blumenauer, H., Push, G., Technische Bruchmechanik,
Deutscher Verlag fuÈr Grundstoffindustrie, Leipzig, 1982.
26. ASTM E 813-89, Standard Test Method for J
Ic, A Measure of
10, p. 401±405.
Â
Â
Â
Â
Â
7. Rittinger, J., Fehervari, A., A toÈres folyamatanak megismerese
      Â
  Â
az eroÈ valtozasanak regisztralasaval uÈtoÈ-hajlõto vizsgalat soran.
Â
BKL Kohaszat, 1971, 245±249.
Â
Â
  Â
8. Toth, L., HegeszthetoÈ szerkezeti acelok ridegedesenek vizs-
galata. PhD. theses. Miskolc. (1974).
9. Instrumented Impact Testing, STP 563, Philadelphia, ASTM,
1974.
10. Pendulum Impact Testing, A Century of Progress, STP 1380,
ASTM. Philadelphia. 2000.
Fracture Toughness, ASTM, Philadelphia, 1990.
11. R. Rintamaa, G. Pusch, R. Ortmann, Vergleichende Bewertung
unterschiedlicher Methoden zur experimentellen Ermittlung
dynamischer Risseinleitungswerte fuÈr BaustaÈhle, Research Re-
port, Technical Research Centre of Finland, Espoo, 1989.
12. D. A. Curry, I. Milne, The Detection and Measurement of Crack
Growth during Ductile Fracture, The Measurement of Crack
Length and Shape During Fracture and Fatigue, EMAS, Lon-
don 1980, pp. 401±434.
Anschrift: Mrs Gy. B. Lenkey, Bay ZoltaÂn Foundation for Applied
Research, Institute of Logistics and Production Systems, IgloÂi u. 2.,
H-3519 Miskolc-Tapolca, Ungarn
Received: 3/26/01
[T 398]
Mat.-wiss. u. Werkstofftech. 32, 562±567 (2001)
Charpy specimens
567