ORGANIC
LETTERS
2000
Vol. 2, No. 10
1377-1378
Synthesis of Unsymmetrical
Diarylmethanes by Cross-Coupling
between Aryl Triflates and
Tetrabutylammonium
Difluorotribenzylstannate†
Antonio Garc´ıa Mart´ınez,* Jose´ Os´ıo Barcina,
Mar´ıa del Rosario Colorado Heras, and AÄ lvaro de Fresno Cerezo
Departamento de Qu´ımica Orga´nica, Facultad de Ciencias Qu´ımicas, UniVersidad
Complutense de Madrid, Ciudad UniVersitaria, 28040 Madrid, Spain
Received February 14, 2000
ABSTRACT
The benzylation of aryl triflates can be achieved by cross-coupling between aryl triflates and the new hypervalent tin reagent (n-Bu4N)+(Bn3-
SnF2)-.
Diarylmethanes are frequently used as subunits in the design
of supramolecular structures such as macrocycles, catenanes,
and rotaxanes.1 Besides this, some diarylmethane derivatives
have been shown to possess interesting biological and
medicinal properties.2,3
The best procedures for the synthesis of the title com-
pounds are the transition metal-catalyzed cross-coupling
between either aryl nucleophiles and benzylic halides3 or aryl
halides and benzylic nucleophiles.4 However, the required
nucleophiles are organomagnesium or organozinc halides,
which are incompatible with a variety of functional groups.
Therefore, the reactions must be carried out using such mild
reaction conditions that global yields obtained are quite low.4
The palladium-catalyzed cross-coupling of organotin re-
agents (Stille reaction) is a widely used method for carbon-
carbon bond formation.5 However, the Stille reaction fails
in the case of cross-coupling between aryl triflates and
substituted benzyltributyltin (highest reported yield: 21%).3,5
Very recently, the Suzuki-Miyaura palladium-catalyzed
cross-coupling reaction has been extended to achieve diaryl-
methanes.6 However, this methodology is also limited by
the availability of boronic acid derivatives.7
Since our preliminary work on the phenylation of alkenyl
triflates with tetrabutylammonium difluorotriphenylstannate,8
a hypervalent tin reagent,9 other hypervalent tin10-12 and
(5) For reviews, see: (a) Stanforth, S. P. Tetrahedron 1998, 54, 263.
(b) Farina, V.; Krishnamurthy, V.; Scott, W. J. Organic Reactions; Wiley:
New York, 1997; Vol. 50. (c) Ritter, K. Synthesis 1993, 735.
(6) Chowdhury, S.; Georghiou, P. E. Tetrahedron Lett. 1999, 40, 7599.
(7) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(8) Garc´ıa Mart´ınez, A.; Os´ıo Barcina, J.; de Fresno Cerezo, A.;
Subramanian, L. R. Synlett 1994, 1047.
† Affectionately dedicated to Prof. Jose´ Luis Soto on the occasion of his
70th birthday.
(1) (a) Ma, J. C.; Dougherty, D. A. Chem. ReV. 1997, 97, 1303. (b) Ja¨fer,
R.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1997, 36, 930.
(2) (a) Rische, T.; Eilbracht, P. Tetrahedron 1999, 55, 1915. (b) Prat,
L.; Mojovic, L.; Levacher, V.; Dupas, G.; Que´guines, G.; Bourguignon, J.
Tetrahedron: Asymmetry 1998, 9, 2509. (c) Ku, Y.-Y.; Patel, R. P.; Sawick,
D. P. Tetrahedron Lett. 1996, 37, 1949.
(3) de Lang, R.-J.; van Hooijdonk, M. J. C. M.; Brandsma, L.; Kramer,
H.; Seinen, W. Tetrahedron 1998, 54, 2953 and references therein.
(4) Rottla¨nder, M.; Knochel, P. Tetrahedron Lett. 1997, 38, 1749 and
references therein.
(9) Gingras, M. Tetrahedron 1991, 32, 7381.
(10) (a) Fouquet, E.; Pereyre, M.; Rodriguez, A. L. J. Org. Chem. 1997,
62, 5242. (b) Fouquet, E.; Rodriguez, A. L. Synlett 1998, 1323.
(11) Fugami, K.; Ohnuma, S.; Kameyama, M.; Saotome, T.; Kosugi,
M. Synlett 1999, 63.
(12) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411.
10.1021/ol005666c CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/27/2000