TlOx FOR BENZYLATION AND ACYLATION REACTIONS
235
showed no activity for the benzene benzylation (Table 1),
ACKNOWLEDGMENTS
which is consistent with the above mechanism.
Suman K. Jana is grateful to CSIR, New Delhi, for the award of Junior
Research Fellowship. The authors are grateful to Dr. A. B. Mandale and
Dr. (Mrs.) A. Mitra for XPS and XRD data.
CONCLUSIONS
REFERENCES
The following important conclusions have been drawn
from this investigation:
1
2
3
. Olah, G. A., in “Friedel–Crafts and related reactions”, Vol. 1, Chap. 1,
Wiley-Interscience, New York, 1963.
. Yusuke, I., Mayumi, O., Wataru, N., and Kazuo, U., Chem. Lett. 10,
1. Because of its basic nature, TlOx interacts strongly
1987 (1992).
(
chemically) with the surface hydroxyls (both weakly and
. Yusuke, I., Mayumi, O., and Kazuo, U., Appl. Catal. A 132, 127 (1995).
strongly acidic ones) of high surface area catalyst supports
such as Si–MCM-41, silica gel, alumina, silica–alumina, and
zirconia, causing a large reduction in the surface area of
the support; the structure of Si–MCM-41 is collapsed after
the deposition of TlOx on it. The supported TlOx prepared
using the high surface area supports are inactive in the ben-
zylation of benzene. In contrast, the TlOx supported on
low surface area sintered macroporous zirconia, silica, or
silica–alumina catalyst carriers shows high benzene benzy-
lation activity. TlOx/zirconia (LS) is a highly promising cata-
lyst for both the benzylation and acylation of benzene and
4. Koyande, S. N., Jaiswal, R. G., and Jayaram, R. V., Ind. Eng. Chem.
Res. 37, 908 (1998).
5
6
. Arata, K., and Hino, M., Appl. Catal. 59, 197 (1990).
. Quaschning, V., Deutsch, J., Druska, P., Niclas, H.-J., and Kemnitz, E.,
J. Catal. 177, 164 (1998).
7. Xia, Y., Hua, W., and Gao, Z., Catal. Lett. 55, 101 (1998).
8. Campanati, M., Fazzini, F., Fornasari, G., Tagliani, A., Vaccari, A., and
Piccolo, O., Chem. Ind. 75, 307 (1998).
9. He, N., Bao, S., and Xu, Q., Appl. Catal. A 169, 29 (1998).
1
0. Cseri, T., Bekassy, S., Figueras, F., and Rizner, S., J. Mol. Catal. A:
Chem. 98, 101 (1995).
1. Choudary, B. M., Kantam, M. L., Sateesh, M., Rao, K. K., and Santhi,
P. L., Appl. Catal. A: Gen. 149, 257 (1997).
1
other aromatic hydrocarbons. It shows high benzene benzy- 12. Pai, S. G., Bajpai, A. R., Deshpande, A. B., and Samant, S. D., Synth.
Commun. 27, 2267 (1997).
3. Barlow, S. J., Clark, J. H., Darby, M. R., Kybett, A. P., Landon, P., and
Martin, K., J. Chem. Res. Synop. 3, 74 (1991).
4. Coq. B., Gourves, V., and Figueras, F., Appl. Catal. A 100, 69 (1993).
15. Singh, A. P., and Bhattacharya, D., Catal. Lett. 32, 327 (1995).
lation activity, even in the presence of moisture in the cata-
1
1
lyst or in the reaction mixture. Only the catalyst that con-
tains Tl2O3 shows activity for the benzylation and acylation
reactions.
2
. The TlOx/zirconia (LS) catalyst shows the following 16. Singh, A. P., Bhattacharya, D., and Sarma, S., J. Mol. Catal. A: Chem.
102, 139 (1995).
trend for its activity in the benzylation of benzene and
substituted benzenes containing electron-donating groups
viz. CH3 and CH3O): benzene > methyl benzene > p-
1
7. Paul, V., Sudalai, A., Daniel, T., and Srinivasan, K. V., Tetrahedron
Lett. 35, 2601 (1994).
(
18. Choudhary, V. R., Jana, S. K., and Kiran, B. P., Catal. Lett. 59, 217
dimethylbenzene > methoxy benzene, which is totally
(1999).
opposite to that observed for the acid-catalyzed Friedel– 19. Choudhary, V. R., Jana, S. K., and Kiran, B. P., Catal. Lett. 64,
2
23 (2000).
Crafts-type benzylation reactions. This trend and the basic
nature of the catalyst indicate that the benzylation and acy-
lation reactions follow a redox mechanism in the present
case.
2
2
2
0. Choudhary, V. R., Jana, S. K., and Kiran, B. P., J. Catal. 192, 257 (2000).
1. Rana, R. K., and Viswanathan, B., Catal. Lett. 52, 25 (1998).
2. Haller, G. L., and Resasco, D. F., Adv. Catal. 36, 173 (1989).
23. Tauster, S. J., Acc. Chem. Res. 20, 389 (1987).
3
. The induction period for the benzylation and 24. Choudhary, V. R., Mulla, S. A. R., and Uphade, B. S., Ind. Eng. Chem.
Res. 36, 2096 (1997).
acylation reactions depends strongly on the presence of
moisture in the catalyst and/or in the reaction mixture;
it is decreased with a decreasing amount of moisture.
During the induction period, the catalyst is activated
2
2
5. Choudhary, V. R., Mulla, S. A. R., and Uphade, B. S., J. Chem. Technol.
Biotechnol. 72, 99 (1998).
6. Uphade, B. S., Mulla, S. A. R., and Choudhary, V. R., Stud. Surf. Sci.
Catal. 113, 1015 (1998).
most probably by the modification of its surface by 27. Chen, J., Li, Q., Xu, R., and Xiao, F., Angew. Chem. Int. Ed. Engl. 34,
2
694 (1995).
8. Jentys, A., Pham, N. H., and Vinek, H., J. Chem. Soc. Faraday Trans.
2, 3287 (1996).
9. Choudhary, V. R., and Mantri, K., Langmuir 16, 8024 (2000).
interaction with the HCl (a by-product) produced in the
initial benzylation or acylation reaction. Pretreatment by
HCl gas of the catalyst causes a drastic reduction in the
2
9
2
induction period for both the benzylation and acylation 30. Brio, K., Bekassy, S., Agai, B., and Figueras, F., J. Mol. Catal. A: Chem.
151, 179 (2000).
reactions.