Page 3 of 3
Organic & Biomolecular Chemistry
a
School of Petrochemical Engineering, Jiangsu Province Key
CH3SCD2SCD3 (see Supporting Information). In combination
with the aforementioned results, we deduced the nucleophilic
attack of the thionium ion derived from DMSO by the sulfur
Laboratory of Fine Petrochemical Engineering, Changzhou University,
Changzhou 213164, P. R. China; E-mail: jiangcheng@cczu.edu.cn
DOI: 10.1039/C3OB41510D
50
55
60
atom of 3-(methylthiomethyl)-1H-indole
A formed the
Nanjing 210093, P. R. China
† Electronic Supplementary Information (ESI) available: See
DOI: 10.1039/b000000x/
5
sulfonium cation 9 (in Scheme 3, R = 3-(N-methylindolyl)),12
which underwent an SN2 reaction by H2O to deliver the
hydroxymethylation product as the precusor of the
formylation product.13
1
(a) R. C. Larock, Comprehensive Organic Transformations; Wiley-
VCH: New York, 1988; (b) G. A. Olah, L. Ohannesianm and M.
Arvanaghi, Chem. Rev., 1987, 87, 671-684.
(a) A. Haack, Ber., 1927, 60, 119-122; (b) G. Jones and S. P.
Stanforth, Org. React., 2000, 56, 355-686; (c) G. Seybold, J. Prakt.
Chem., 1996, 338, 392-396; (d) G. Jones and S. P. Stanforth, Org.
React., 1997, 49, 1-330.
2
3
(a) J. C. Duff and E. J. Bills, J. Chem. Soc., 1932, 1987-1988; (b) J. C.
Duff and E. J. Bills, J. Chem. Soc., 1934, 1305-1308; (c) J. C. Duff,
J. Chem. Soc., 1941, 547-550; (d) J. C. Duff, J. Chem. Soc., 1945,
276-277; (e) L. N. Ferguson, Chem. Rev., 1946, 38, 227–254.
65 4 (a) K. Reimer and F. Tiemann, Ber., 1876, 9, 824-828; (b) H.
Wynberg, Chem. Rev., 1960, 60, 169-184; (c) H. Wynberg, Comp.
Org. Synth., 1991, 2, 769-775; (d) H. Wynberg and E. W. Meijer,
Org. Reat., 1982, 28, 1-36.
5
(a) L. Gattermann and J. A. Koch, Ber., 1897, 30, 1622-1624; (b) L.
Gattermann and W. Berchelmann, Ber., 1898, 31, 1765–1769; (c) L.
Gattermann, Ber., 1890, 23, 1218–1228; for reviews, see: (d) N. N.
Crounse, Org. React., 1949, 5, 290-300; (e) W. E. Truce, Org.
React., 1957, 9, 37-72.
70
10 Scheme 3. Proposed mechanism.
The second is how NH4OAc promotes the Pummerer
reaction. Huang reported the NH4OAc and CuBr(PPh3)3-
induced Pummerer reaction between free (NH)-indole and
DMSO leading to 3-methylthiomethyl indoles.14 Based upon
15 this and the property of DMSO, a postulated mechanism is
illustrated in Scheme 3. Firstly, NH4OAc is decomposed to
HOAc and NH3. Then, DMSO is activated by HOAc to form
intermediate 6. Secondly, the cleavage of the C-OH bond
6
W. Wu and W. Su, J. Am. Chem. Soc., 2011, 133, 11924-11927.
75 7 J. Chen, B. Liu, D. Liu, S. Liu and J. Cheng, Adv. Synth. Catal., 2012,
354, 2438-2442.
8
(a) F. Luo, C. Pan, L. Li, F. Chen and J. Cheng, Chem. Commun.,
2011, 47, 5304-5306; (b) X. Ren, J. Chen, F. Chen and J. Cheng,
Chem. Commun., 2011, 47, 6725-6727.
80 9 (a) R. Pummerer, Ber. Dtsch. Chem. Ges., 1909, 42, 2282-2291; (b)
R. Pummerer, Ber. Dtsch. Chem. Ges., 1910, 43, 1401-1412; for
reviews, see: (c) K. S. Feldman, Tetrahedron, 2006, 62, 5003-5034;
(d) S. K. Bur and A. Padwa, Chem. Rev., 2004, 104, 2401-2432; (e)
S. Akai and Y. Kita, Top. Curr. Chem., 2007, 274, 35-76; (f) L. H. S.
+
assisted by NH4 forms intermediate 7. No reaction takes
20 place without ammonium, suggesting that the ammonium is
85
Smith, S. C. Coote, H. F. Sneddon and D. J. Procter, Angew. Chem.,
Int. Ed., 2010, 49, 5832-5844; (g) A. Padwa, D. E. Gunn Jr and M.
H. Osterhout, Synthesis, 1997, 1353-1378; (h) A. Padwa and A. G.
Waterson, Curr. Org. Chem., 2000, 4, 175-203; (i) O. De Lucchi, U.
Miotti and G. Modena, Org. React., 1991, 40, 157-184; (j) A.
Padwa, S. K. Bur, M. D. Danca, J. D. Ginn and S. M. Lynch, Synlett,
2002, 851-862.
+
crucial for this transformation. The role of NH4 is likely to
facilitate the cleavage of the C-OH bond by changing the
strongly basic OH- group to NH3·H2O as a weakly basic
leaving group. Thirdly, the thionium ion 8 is formed in the
25 presence of NH3·H2O as a base. Then, it is attacked by N-
methyl indole as a nucleophile to form intermediate A.
Fourthly, the attack of sulfur atom in A to the thionium ion 8
affords sulfonium 9. Finally, the SN2 nucleophilic reaction of
intermediate 9 attacked by H2O takes place to form the
30 hydroxymethylation product, which is oxidized to the
formylation product 2 by 7 in similar with Swern oxidation.15
Meanwhile, the nucleophilic attack of 9 by another molecular
N-methyl indole produces 3,3’-diindolylmethane (DIM).
In conclusion, we have developed an NH4OAc promoted
35 procedure involving a sequential traditional and unusual
Pummerer reaction under nearly neutral conditions, leading to
3-formyl indole. This procedure uses DMSO and H2O as the
carbonyl source with good functional group tolerance. Thus, it
represents an important development in DMSO-mediated
40 transformation and the Pummerer reaction.
90
10 For the HCl-promoted oxidation of sulfide by sulfoxide, please see:
(a) U. Miotti, J. Chem. Soc., Perkin Trans. 2 1991, 617-622; (b) A.
Bovia and U. Miotti, J. Chem. Soc., Perkin Trans. 2 1978, 172-177.
95 11 A. P. Zaraiskii, N. A. Zaraiskaya, L. I. Velichko and N. M.
Anikeeva, Russ. J. Org. Chem., 2007, 43, 1728-1729.
12 For the attack of S atom of sulfide on the carbon cation of thionium
ion and the nucleophilic sustitution of the formed sulfonium, see: R.
Tanikaga, Y. Hiraki, N. Ono and A. Kaji, J. Chem. Soc., Chem.
100
Commun., 1980, 41-42.
13 For the sustitution of sulfonium by nucleophiles, please see: (a) G.
Ranieri, J. P. Hallett and T. Welton, Ind. Eng. Chem. Res., 2008, 47,
638-644; (b) R. T. Hargreaves, A. M. Katz and W. H. Saunders Jr.,
J. Am. Chem. Soc. 1976, 98, 2614-2616; (c) M. P. Friedberger and E.
R. Thornton, J. Am. Chem. Soc., 1976, 98, 2861-2865; (d) D. N.
Kevill and M. H. Ismail, J. Org. Chem., 1991, 56, 3454-3457; (e) K.
Umemura, H. Matsuyama, N. Watanabe, M. Kobayashi and N.
Kamigata, J. Org. Chem., 1989, 54, 2374-2383; (f) Y. Pocker and A.
J. Parker, J. Org. Chem., 1966, 31, 1526-1531; (g) K. R. Fountain,
D. B. Tad-y, T. W. Paul and M. V. Golynskiy, J. Org. Chem., 1999,
64, 6547-6553; (h) K. R. Fountain and K. D. Patel, J. Org. Chem.,
1997, 62, 4795-4797; (i) F. L. Roe and Jr. W. H. Saunders Jr.,
Tetrahedron Lett., 1977, 33, 1581-1585.
105
110
115
We thank the National Natural Science Foundation of China
(nos. 21272028 and 21202013), State Key Laboratory of
Coordination Chemistry of Nanjing University and Jiangsu
Key Laboratory of Advanced Catalytic Materials and
45 Technology for financial support.
14 J. Liu, X. Wang, H. Guo, X. Shi, X. Ren and G. Huang, Tetrahedron,
2012, 68, 1560-1565.
15 (a) S. L. Huang, K. Omura and D. Swern, J. Org. Chem., 1976, 41,
3329-3331; (b) T. T. Tidwell, Org. React., 1990, 39, 297-572.
Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3