were in G1 phase (73.23%). Treatment with compound 8e
resulted in dose dependent accumulation of cells in G2/M phase.
For instance 17.55% and 31.13% of cells were in G2/M phase
after treatment with 1 and 2.5 µM concentrations (Figure 6).
These results clearly indicate the G2/M phase cell cycle arrest.
8.
(a) Finlay, M. R. V.; Buttar, D.; Critchlow, S. E.; Dishington, A. P.;
Fillery, S. M.; Fisher, E.; Glossop, S. C.; Graham, M. A.; Johnson, T.;
Lamont, G. M. Bioorg. Med. Chem. Lett. 2012, 22, 4163; (b) Foote, K.
M.; Blades, K.; Cronin, A.; Fillery, S.; Guichard, S. S.; Hassall, L.;
Hickson, I.; Jacq, X.; Jewsbury, P. J.; McGuire, T. M. J. Med. Chem,
2013, 56, 2125; (c) Gompel, M.; Leost, M.; Joffe, E. B. D. K.; Puricelli,
L.; Franco, L. H.; Palermo, J.; Meijer, L. Bioorg. Med. Chem. Lett.
2004, 14, 1703; (d) Radwan, M. A. A.; El-Sherbiny, M. Bioorg. Med.
Chem. 2007, 15, 1206.
9
.
(a)Gozgit, J. M.; Wong, M. J.; Moran, L.; Wardwell, S.; Mohemmad, Q.
K.; Narasimhan, N. I.; Shakespeare, W. C.; Wang, F.; Clackson, T.;
Rivera, V. M. Mol.Cancer Ther. 2012, 11, 690-699; (b) Chow, L. Q.
M.; Eckhardt, S. G. J. Clin. Oncol. 2007, 25, 884.
1
1
0. Xu, H.; Fan, L.-l. Eur. J. Med. Chem. 2011, 46, 364-369.
1. Merlic, C. A.; You, Y.; McInnes, D. M.; Zechman, A. L.; Miller, M.
M.; Deng, Q. Tetrahedron 2001, 57, 5199-5212.
1
2. Schuda, P. F.; Ebner, C. B.; Morgan, T. M. Tetrahedron Lett. 1986, 27,
Figure 6. Effect of compound 8e on cell cycle progression of PA-1 cells, (a)
control cells, (b) Cells treated with 1 µM for 24 h, (c) Cells treated with 2.5
µM for 24 h. The analysis of cell cycle distribution was performed by using
propidium iodide staining method.
2
567-2570.
3. Sperry, J. Tetrahedron Lett. 2011, 52, 4537-4538.
1
1
4. Liu, Y.; Bai, Y.; Zhang, J.; Li, Y.; Jiao, J.; Qi, X. Eur. J. Org. Chem.
2
007, 2007, 6084-6088.
In present study, a panel of oxindole linked indolyl-pyrimidine
derivatives were synthesized and evaluated for their in vitro
cytotoxic potential against four cancer cell lines. The compounds
showing promising results (8a, 8d, 8e, 8f, 8i, 8j) were also
evaluated for the cytotoxicity on normal prostate epithelial cell
line (RWPE-1). Interestingly, the tested compounds showed
more selectivity toward LnCaP cancer cell as compared to the
normal prostate epithelial cells. Notably, compound 8e was found
to be most potent amongst all the tested compounds, having IC50
value (2.43±0.29 µM) on PA-1 cells, while most of the tested
compounds showed enhanced cytotoxicity against prostate
cancers cells compared to the reference drugs. The cell cycle
analysis results revealed that compound 8e arrested the PA-1 cell
cycle at G2/M phase in dose dependent manner. Furthermore, the
apoptotic potential of the most active cytotoxic compound 8e was
assessed by acridine orange/ethidium bromide (AO-EB) staining
and annexin binding assay on PA-1 cells. These preliminary
results encourage further investigation on synthesized
compounds aiming to the development of new potential cytotoxic
agents.
15. (a) Singh, P.; Kaur, M.; Holzer, W. Eur. J. Med. Chem. 2010, 45, 4968-
4982; (b) Nagarsenkar, A.; Prajapti, S. K.; Guggilapu, S. D.; Birineni,
S.; Kotapalli, S. S.; Ummanni, R.; Babu, B. N. Med. Chem. Commun.
2016, (DOI: 10.1039/c5md00513b); (c) Zhang, W.; Go, M.-L.
Bioorg.Med.Chem. 2009, 17, 2077; (d) Lee, H. J.; Lim, J. W.; Yu, J.;
Kim, J. N. Tetrahedron Lett.2014, 55, 1183; (e) Sun, L.; Tran, N.; Tang,
F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. J. Med. Chem.1998, 41,
2
588; (f) Xia, Z.; Knaak, C.; Ma, J.; Beharry, Z. M.; McInnes, C.;
Wang, W.; Kraft, A. S.; Smith, C. D. J. Med. Chem. 2008, 52, 74; (g)
Biradar, J. S.; Sasidhar, B. S. Eur. J. Med. Chem. 2011, 46, 6112.
1
1
6. Thummuri, D.; Jeengar, M. K.; Shrivastava, S.; Nemani, H.; Ramavat,
R. N.; Chaudhari, P.; Naidu, V. G. M. Pharmacol. Res. 2015, 99, 63.
7. Shrivastava, S.; Jeengar, M. K.; Reddy, V. S.; Reddy, G. B.; Naidu, V.
G. M. Exp. Mol. Pathol. 2015, 98, 313.
18. Shrivastava, S.; Kulkarni, P.; Thummuri, D.; Jeengar, M. K.; Naidu, V.
G. M.; Alvala, M.; Redddy, G. B.; Ramakrishna, S. Apoptosis, 2014, 19,
1
148.
9. Sharma, P.; Senwar, K. R.; Jeengar, M. K.; Reddy, T. S.; Naidu, V. G.
1
M.; Kamal, A.; Shankaraiah, N. Eur.J. Med. Chem. 2015, 104, 11.
20. Swami, R.; Singh, I.; Jeengar, M. K.; Naidu, V. G. M.; Khan, W.; Sistla,
R. Int. J. Pharm. 2015, 486, 287.
1. Typical reaction procedure, experimental data for all the compounds
and general methods are provided in the supporting information.
2
Acknowledgments
We thank the Department of Pharmaceuticals (Ministry of
Chemicals and Fertilizers, Govt. of India) for providing funds
and also CSIR-Indian Institute of Chemical Technology,
Hyderabad for providing the facilities.
References and notes
1
2
.
.
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. CA Cancer J. Clin. 2014, 64, 9.
Heffeter, P.; Jakupec, M. A.; Orner, W.; Wild, S.; Keyserlingk, N. G.;
Elbling, L.; Zorbas, H.; Korynevska, A.; Knasmuller, S.; Sutterluty, H.;
Micksche, M.; Keppler, B. K.; Berger, W. Biochem. Pharmacol. 2006,
7
1, 426.
3
.
(a) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.;
Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620; (b) Chang, C.-J.;
Geahlen, R. L. J. Nat. Prod. 1992, 55, 1529; (c) Harper, J. W.; Adams,
P. D. Chem. Rev. 2001, 101, 2511; (d) Sashidhara, K. V.; Dodda, R.P.;
Sonkar, R.; Palnati, G. R.; Bhatia, G. Eur. J. Med Chem. 2014, 81, 499;
(e) Bali, A.; Sen, U.; Peshin, T. Eur. J. Med Chem. 2014, 74, 477; (f)
Masaguer, C. F.; Raviña, E.; Loza, I.; Fontenla, J. Bioorg. Med. Chem.
Lett. 1997, 7, 913.
4
.
(a) Liu, Y.-F.; Wang, C.-L.; Bai, Y.-J.; Han, N.; Jiao, J.-P.; Qi, X.-L.
Org. Process Res. Dev. 2008, 12, 490; (b) Chen, Z.; Gibson, T. B.;
Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.-e.; Wright, A.;
Vanderbilt, C.; Cobb, M. H. Chem. Rev. 2001, 101, 2449.
Kurup, A.; Garg, R.; Hansch, C. Chem. Rev. 2001, 101, 2573-2600.
Bharate, S. B.; Sawant, S. D.; Singh, P. P.; Vishwakarma, R. A. Chem.
Rev. 2013, 113, 6761.
5
6
.
.
7
.
Cragg, G. M.; Grothaus, P. G.; Newman, D. J. Chem. Rev. 2009, 109,
012.
3
6