Ju and Varma
development,5 and the approach needs to be considered for
assembly of heterocyclic compounds.
SCHEME 1. Microwave-Accelerated Synthesis of Nitrogen
Heterocycles
Organic reactions assisted by microwave (MW) irradiation
have attracted considerable attention in the past decade for the
efficient and relatively friendlier synthesis of a variety of organic
compounds.6 Use of MW irradiation for the formation of carbon
heteroatoms, especially carbon-nitrogen bonds, has been re-
ported.7 Nitrogen-containing heterocycles are known subunits
in many natural products and biologically active pharmaceuti-
cals. Among these, azacycloalkanes, an important class of
compounds, are prepared via alkylation of primary amines with
glycol disulfonate in refluxed anhydrous dioxane,8 using
complicated multistep reactions,9 under harsh reaction condi-
tions10 or via coupling reactions using expensive metal cata-
lysts.11 The syntheses of dihydroisoindole derivatives include
borane-THF reduction of phthalimide,12 multistep metalation-
alkylation of formamidine,13 reductive amination of phthalde-
hyde by tetracarbonylhydridoferrate,14 and catalytic N-hetero-
cyclization using a Cp*Ir complex.15 The standard preparation
of 4,5-dihydropyrazoles involves the cyclocondensation of
hydrazine derivatives with R,â-unsaturated carbonyl com-
pounds16 or the reaction of hydrazine with substituted cyclo-
propanes,17 often requiring the use of a crown ether as a phase-
transfer catalyst.18 Pyrazolidines are usually prepared by the
condensation reaction of hydrazines with â-diketones or â-ke-
toesters or alternatively by reacting a protected hydrazine, di-
tert-butyldihydrazodiformate, with 1,3-dibromopropane in the
presence of a phase-transfer catalyst ultimately requiring a
sequential deprotection of the Boc group in 4 M HCl.19 To the
best of our knowledge, the direct syntheses of azacycloalkanes,
dihydroisoindole derivatives, 4,5-dihydropyrazoles, pyrazoli-
dines, and 1,2-dihydrophthalazines via a single-step one-pot
heterocyclization of primary amines or hydrazine derivatives
with alkyl dihalides or ditosylates have never been fully
explored.
In a broad program of developing efficient, selective, and
eco-friendly synthetic methods,20 we started exploring the use
of water as reaction media in conjunction with microwave
irradiation as a useful, environmentally benign alternative.21
Initial exploration of the reaction of aniline derivatives with
dihalides proved encouraging as it afforded N-aryl azacyclo-
alkanes,21a and the reaction was also applicable to aliphatic
primary amines. The scope of this general reaction was further
extended to assemble N-substituted 2,3-dihydro-1H-isoindoles
in excellent yields and with a great ease of purification.
Additionally, the application of this double alkylation approach
to hydrazine derivatives generated heterocycles with two
heteroatoms such as 4,5-dihydropyrazoles, pyrazolidines, and
1,2-dihydrophthalazines.21b Our results on the double alkylation
of amines and hydrazine by alkyl dihalides or ditosylates under
microwave irradiation in aqueous media in the presence of a
mild base, which provides a series of nitrogen-containing
heterocycles in a simple and straightforward approach (Scheme
1), are reported here.
(4) (a) Ionic Liquid in Synthesis; Wasserscheid, P., Welton, T., Eds.;
Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. (b) Darr, J. A.;
Poliakoff, M. Chem. ReV. 1999, 99, 495. (c) Clifford, A. A.; Rayer, C. M.
Tetrahedron Lett. 2001, 42, 323. (d) Wentworth, P.; Janda, K. D. Chem.
Commun. 1999, 1917. (e) Chandrasekhar, S.; Narsihmulu, Ch.; Shameem
Sultana, S.; Reddy, N. R. Org. Lett. 2002, 4, 4399.
(5) (a) Li, C. J. Chem. ReV. 2005, 105, 3095. (b) Organic Synthesis in
water; Greico, P. A., Ed.; Blackie: London, 1998. (c) Wei, W.; Keh, C. C.
K.; Li, C. J.; Varma, R. S. Clean Technol. EnViron. Policy 2005, 7, 62. (d)
Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless,
K. B. Angew. Chem., Int. Ed. 2005, 44, 3275. (e) Klijn, J. E.; Engberts, J.
B. F. N. Nature 2005, 435, 746.
(6) (a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250. (b) Varma,
R. S. Green Chem. 1999, 1, 43. (c) MicrowaVes in Organic Synthesis;
Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2002. (d) Bose, A. K.;
Manhas, M. S.; Ganguly, S. N.; Sharma, A. H.; Banik, B. K. Synthesis
2002, 1578. (e) Baghurst, D. R.; Mingos, D. M. P. Chem. Soc. ReV. 1991,
20, 1.
(7) (a) Varma, R. S. J. Heterocycl. Chem. 1999, 36, 1565. (b) Shi, L.;
Wang, M.; Fan, C. A.; Zhang, F. M.; Tu, Y. Q. Org. Lett. 2003, 5, 3515.
(c) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Org. Lett.
2004, 6, 1001. (d) Wu, X.; Larhed, M. Org. Lett. 2005, 7, 3327. (e) Hamelin,
J.; Bazureau, J. P.; Texier-Boullet, F. In MicrowaVes in Organic Synthesis;
Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2002, pp 253-294.
(8) Renolds, D. D.; Kenyon, W. O. J. Am. Chem. Soc. 1950, 72, 1597.
(9) (a) Lai, G. Synth. Commun. 2001, 31, 565. (b) Verardo, G.; Dolce,
A.; Toniutti, N. Synthesis 1999, 74.
(18) Shostakovskii, S. M.; Mochalov, V. N.; Voropaeva, T. K.; Shosta-
kovskii, V. M.; Nefedov. O. M. Bull. Acad. Sci. USSR, DiV. Chem. Sci.
1985, 34, 218.
(10) (a) Bhaskar Kanth, J. V.; Periasamy, M. J. Org. Chem. 1993, 58,
3156. (b) Olsen, C. J.; Furst, A. J. Am. Chem. Soc. 1953, 75, 3026.
(11) (a) Lo, Y. S.; Causey, D. H.; Shamblee, D. A.; Mays, R. P. Eur.
Pat. Appl. EP 279543, 1988. (b) Tsuji, Y.; Yokoyama, Y.; Huh, K. T.;
Yoshihisa, Y. Bull. Chem. Soc. Jpn. 1987, 60, 3456. (c) Tararov, V. I.;
Kadyrov, R.; Borner, A.; Riermeier, T. H. Chem. Commun. 2000, 1867.
(d) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029.
(12) Gawley, R. E.; Chemburkar, S. R.; Smith, A. L.; Anklekar, T. V.
J. Org. Chem. 1988, 53, 5381.
(13) Meyers, A. I.; Santiago, B. Tetrahedron Lett. 1995, 36, 5877.
(14) Watanabe, Y.; Shim, S. C.; Uchina, H.; Mitsudo, T.; Takegami, Y.
Tetrahedron 1979, 35, 1433.
(15) Fujita, K.; Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525.
(16) Eicher, T.; Hauptmann, S.; Speicher, A. The chemistry of hetero-
cycles; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany 2003; pp
186-187.
(17) (a) Parham, W. E.; Dooley, J. F. J. Am. Chem. Soc. 1967, 89, 985.
(b) Parham, W. E.; Dooley, J. F. J. Org. Chem. 1968, 33, 1476.
(19) (a) Boros, E. E.; Bouvier, F.; Randhawa, S.; Rabinowitz, M. H. J.
Heterocycl. Chem. 2001, 38, 613. (b) Ahn, J. H.; Kim, J. A.; Kim, K.-M.;
Kwon, H.-M.; Huh, S.-H.; Rhee, S. D.; Kim, K. R.; Yang, S.-D.; Park,
S.-D.; Lee, J. M.; Kim, S. S.; Cheon, H. G. Bioorg. Med. Chem. Lett. 2005,
15, 1337.
(20) For reactions in ionic liquid, see: (a) Namboodiri, V. V.; Varma,
R. S. Chem. Commun. 2002, 342. (b) Namboodiri, V. V.; Varma, R. S.
Org. Lett. 2002, 4, 3161. (c) Yang, X. F.; Wang, M.; Varma, R. S.; Li, C.
J. Org. Lett. 2003, 5, 657. (d) Kim, Y. J.; Varma, R. S. Tetrahedron Lett.
2004, 45, 7205. (e) Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882.
For reactions in PEG, see: (f) Namboodiri, V. V.; Varma, R. S. Green
Chem. 2001, 3, 146. For reactions in water, see: (g) Skouta, R.; Varma, R.
S.; Li, C. J. Green Chem. 2005, 7, 571. (h) Ju, Y.; Varma, R. S. Green
Chem. 2004, 6, 219.
(21) (a) Ju, Y.; Varma, R. S. Org. Lett. 2005, 7, 2409. (b) Ju, Y.; Varma,
R. S. Tetrahedron Lett. 2005, 46, 6011. (c) An, J.; Bagnell, L.; Cablewski,
T.; Strauss, C. R.; Trainor, R. W. J. Org. Chem. 1997, 62, 2505. (d) Arvela,
R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101.
136 J. Org. Chem., Vol. 71, No. 1, 2006