Page 9 of 10
Journal of the American Chemical Society
tolerance of the method were further demonstrated on a
Borylation of Aryl Ethers via Ni-Catalyzed C–OMe Cleavage. J. Am.
1
2
3
4
5
6
7
8
number of representative carbocyclic and heterocyclic sub-
strates, as well as natural products and medicinally relevant
compounds. The photocatalysis is enabled by the simple,
abundant and low molecular weight heterocyclic commodity
chemical phenothiazine PTH1 that effects single electron re-
duction of substrates with strong bonds and low reduction
potentials by a proton-coupled electron transfer mechanism.
Chem. Soc. 2015, 137, 6754. (h) Atack, T. C.; Cook, S. P. Manganese-
Catalyzed Borylation of Unactivated Alkyl Chlorides. J. Am. Chem. Soc.
2016, 138, 6139. (i) Yoshida, T.; Ilies, L.; Nakamura, E. Iron-catalyzed
Borylation of Aryl Chlorides in the Presence of Potassium t-Butoxide.
ACS Catal. 2017, 7, 3199. (j) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian,
M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.;
Yan, M.; Baran, P. S. Decarboxylative Borylation. Science 2017, 356,
eaam7355. (k) Arevalo, R.; Chirik, P. J. Enabling Two-Electron Path-
ways with Iron and Cobalt: From Ligand Design to Catalytic Applica-
tions. J. Am. Chem. Soc. 2019, 141, 9106. (l) Malapit, C. A.; Bour, J. R.;
Laursen, S. R.; Sanford, M. S. Mechanism and Scope of Nickel-
Catalyzed Decarbonylative Borylation of Carboxylic Acid Fluorides. J.
Am. Chem. Soc. 2019, 141, 17322.
(7) (a) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama,
M. Design, Generation, and Synthetic Application of Borylzincate:
Borylation of Aryl Halides and Borylzincation of Benzynes/Terminal
Alkyne. J. Am. Chem. Soc. 2013, 135, 18730. (b) Bose, S. K.; Fucke, K.;
Liu, L.; Steel, P. G.; Marder, T. B. Zinc-Catalyzed Borylation of Primary,
Secondary and Tertiary Alkyl Halides with Alkoxy Diboron Reagents
at Room Temperature. Angew. Chem., Int. Ed. 2014, 53, 1799. (c)
Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Formation of
C(sp2)-Boronate Esters by Borylative Cyclization of Alkynes Using
BCl3. Angew. Chem., Int. Ed. 2015, 54, 11245. (d) Légaré, M. A.; Cour-
temanche, M. A.; Rochette, É.; Fontaine, F. G. Metal-Free Catalytic C−H
Bond Activation and Borylation of Heteroarenes. Science 2015, 349,
513. (e) Mo, F.; Qiu, D.; Zhang, Y.; Wang, J. Renaissance of Sandmeyer-
Type Reactions: Conversion of Aromatic C–N Bonds into C–X Bonds (X
= B, Sn, P, or CF3). Acc. Chem. Res. 2018, 51, 496. (f) Zhang, L.; Jiao, L.
Pyridine-Catalyzed Radical Borylation of Aryl Halides. J. Am. Chem.
Soc. 2017, 139, 607. (g) Zhang, L.; Jiao, L. Super Electron Donors De-
rived from Diboron. Chem. Sci. 2018, 9, 2711. (h) Su, Y.; Cao, D.; Do, H.;
Li, Y.; Kinjo, R. Metal-Free Selective Borylation of Arenes by a Diazadi-
borinine via C–H/C–F Bond Activation and Dearomatization. J. Am.
Chem. Soc. 2019, 141, 13729. (i) Lv, J.; Chen, X.; Xue, X-S.; Zhao, B.;
Liang, Y.; Wang, M.; Jin, L.; Yuan, Y.; Han, Y.; Zhao, Y.; Lu, Y.; Zhao, J.;
Sun, W-Y.; Houk, K. N.; Shi, Z. Metal-Free Directed sp2-C–H Borylation.
Nature 2019, 575, 336.
ASSOCIATED CONTENT
Supporting Information
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Experimental and spectral details for all new compounds and
all reactions reported. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support by the Welch Foundation (AX-1788), NSF
(CHE-1455061) and NIGMS (GM134371) is gratefully
acknowledged. UTSA NMR and X-ray crystallography facilities
were supported by NSF (CHE-1625963 and CHE-1920057).
The authors acknowledge the Texas Advanced Computing
Center (TACC) at UT Austin for providing computational re-
sources.
REFERENCES
(1) (a) Suzuki, A.; Brown, H. C. Organic Syntheses Via Boranes; Al-
drich Chemical Company: Milwakee, 2003; Vol. 3. (b) Hall, D. G. Bo-
ronic Acids, 2nd ed.; Wiley-VCH: Weinheim, 2011.
(2) (a) Corey, E. J. Catalytic Enantioselective Diels–Alder Reactions:
Methods, Mechanistic Fundamentals, Pathways, and Applications.
Angew. Chem., Int. Ed. 2002, 41, 1650. (b) Ishihara, K. Synthesis and
Application of Organoboron Compounds. Top. Organomet. Chem.
2015, 49, 243.
(3) (a) Shoji, Y.; Ikabata, Y.; Wang, Q.; Nemoto, D.; Sakamoto, A.;
Tanaka, N.; Seino, J.; Nakai, H.; Fukushima, T. Unveiling a New Aspect
of Simple Arylboronic Esters: Long-Lived Room-Temperature Phos-
phorescence from Heavy-Atom-Free Molecules. J. Am. Chem. Soc.
2017, 139, 2728. (b) Huang, N.; Ding, X.; Kim, J.; Ihee, H.; Jiang, D. A
Photoresponsive Smart Covalent Organic Framework. Angew. Chem.,
Int. Ed. 2015, 54, 8704.
(8) (a) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov,
O. V. Scalable, Metal-and Additive-Free, Photoinduced Borylation of
Haloarenes and Quaternary Arylammonium Salts. J. Am. Chem. Soc.
2016, 138, 2985. (b) Chen, K.; Zhang, S.; He, P.; Li, P. Efficient Metal-
Free Photochemical Borylation of Aryl Halides under Batch and Con-
tinuous-Flow Conditions. Chem. Sci. 2016, 7, 3676.
(9) Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. Simple and Efficient Generation
of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and
Aryl Iodides at Room Temperature. J. Am. Chem. Soc. 2017, 139, 8621.
(10) Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic
Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124.
(11) Qiao, Y.; Yang, Q.; Schelter, E. Photoinduced Miyaura Boryla-
tion by a Rare Earth Photoreductant: the Hexachlorocerate(III) Anion.
Angew. Chem., Int. Ed. 2018, 57, 10999.
(4) Ban, H. S.; Nakamura, H. Boron-Based Drug Design. Chem. Rec.
2015, 15, 616.
(5) Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S.
Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem.
Rev. 2015, 115, 7893.
(12) Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A. Metal-Free Radical
Borylation of Alkyl and Aryl Iodides. Angew. Chem. Int. Ed. 2018, 57,
16832.
(13) (a) Cheung, M. S.; Lin, Z.; Li, P. Metal-Free Borylation of Elec-
tron-Rich Aryl (Pseudo)halides under Continuous-Flow Photolytic
Conditions. Org. Chem. Front. 2016, 3, 875. (b) Candish, L.; Teders, M.;
Glorius, F. Transition-Metal-Free, Visible-Light-Enabled Decarboxyla-
tive Borylation of Aryl N-Hydroxyphthalimide Esters. J. Am. Chem. Soc.
2017, 139, 7440. (c) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.;
Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation
of Carboxylic Acids. Science 2017, 357, 283. (d) Jin, S.; Nguyen, V. T.;
Dang, H. T.; Nguyen, D. P.; Arman, H. D.; Larionov, O. V. Photoinduced
Carboborative Ring Contraction Enables Regio- and Stereoselective
Synthesis of Multiply Substituted Five-Membered Carbocycles and
Heterocycles. J. Am. Chem. Soc. 2017, 139, 11365. (e) Hu, D.; Wang, L.;
Li, P. Decarboxylative Borylation of Aliphatic Esters under Visible-
Light Photoredox Conditions. Org. Lett. 2017, 19, 2770. (f) Wu, J.; He,
L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of
Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700. (g) Cheng, Y.; Mück-
Lichtenfeld, C.; Studer, A. Transition Metal-Free 1,2-Carboboration of
Unactivated Alkenes. J. Am. Chem. Soc. 2018, 140, 6221. (h) Friese, F.
W.; Studer, A. Deoxygenative Borylation of Secondary and Tertiary
(6) (a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R.
Remarkably Selective Iridium Catalysts for the Elaboration of Aro-
matic C−H Bonds. Science 2002, 295, 305. (b) Mazzacano, T. J.;
Mankad, N. P. Base Metal Catalysts for Photochemical C–H Borylation
That Utilize Metal–Metal Cooperativity. J. Am. Chem. Soc. 2013, 135,
17258. (c) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. Palladium-
Catalyzed, Direct Boronic Acid Synthesis from Aryl Chlorides: A Sim-
plified Route to Diverse Boronate Ester Derivatives. J. Am. Chem. Soc.
2010, 132, 17701. (d) Huang, K.; Yu, D.-G.; Zheng, S.-F.; Wu, Z.-H.; Shi
Z.-J. Borylation of Aryl and Alkenyl Carbamates through Ni-Catalyzed
C–O Activation. Chem. Eur. J. 2011, 17, 786. (e) Dudnik, A. S.; Fu, G. C.
Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including
Unactivated Tertiary Halides, To Generate Carbon–Boron Bonds. J.
Am. Chem. Soc. 2012, 134, 10693. (f) Nakamura, K.; Tobisu, M.;
Chatani, N. Nickel-Catalyzed Formal Homocoupling of Methoxyarenes
for the Synthesis of Symmetrical Biaryls via C–O Bond Cleavage. Org.
Lett. 2015, 17, 6142. (g) Zarate, C.; Manzano, R.; Martin, R. Ipso-
ACS Paragon Plus Environment
9