Page 5 of 6
PleaseC dh oe mn oi ct a al dS cj ui es nt cme argins
Journal Name
ARTICLE
8
9
Z. Liu, J. Liu, L. Zhang, P. Liao, J. Song and X. Bi, Angew. Chem.
Int. Ed., 2014, 53, 5305–5309.
and H. Willems (Takeda), WO 198045 A1, 2015.
DOI: 10.1039/C9SC01370A
For examples of our own work featuring radical cascades, 23 For selected recent approaches to arylacetonitriles, see: a) J.
see: a) W. F. Petersen, R. J. K. Taylor and J. R. Donald, Org.
Lett., 2017, 19, 874–877; b) W. F. Petersen, R. J. K. Taylor and
J. R. Donald, Org. Biomol. Chem., 2017, 15, 5831–5845.
0 For the original example of this reactivity, see: a) A. Suzuki,
M. Tabata and M. Ueda, Tetrahedron Lett., 1975, 2195– 24 As determined by cyclic voltammetry, 2-Iodobenzenesulfonyl
Velcicky, A. Soicke, R. Steiner and H.-G. Schmalz, J. Am.
Chem. Soc., 2011, 133, 6948–6951; b) P. J. Lindsay-Scott, A.
Clarke and J. Richardson, Org. Lett., 2015, 17, 476–479; c) Y.
Satoh and Y. Obora, RSC Adv., 2014, 4, 15736–15739.
1
1
2
198; for elucidation of the mechanism, see: b) A. F.
Bamford, M. D. Cook and B. P. Roberts, Tetrahedron Lett.,
983, 3779–3782; for reviews, see: c) B. Hu and S. G.
chloride is reduced at –0.66 V vs SCE, this reactivity is
attributed to the sulfonyl chloride and lies within the ‘redox
III
II*
1
3 2 2
window’ of Ru(bpy) Cl .6H O [E1/2(Ru /Ru ) = −0.81 V vs
DiMagno, Org. Biomol. Chem., 2015, 13, 3844–3855; d) J. Fu,
G. Zanoni, E. A. Anderson and X. Bi, Chem. Soc. Rev., 2017,
SCE]. 2-Iodo-α-sulfonyl acetonitrile 26 exhibits reductions at
–1.19 V and –1.62 V vs SCE, within the ‘redox-window’ of
IV+ III*
III III–
4
6, 7208–7228.
3
Ir(5-Fppy) [E1/2(Ir /Ir ) = −1.91 V; E1/2(Ir /Ir ) = −2.18 V
1 For examples of iminyl radical -C–C bond cleavage under
photoredox catalysis, see: a) L. Li, H. Chen, M. Mei and L.
Zhou, Chem. Commun., 2017, 53, 11544–11547; b) X.-Y. Yu,
vs SCE] in the presence of (+)-sodium L-ascorbate. Potentials
were measured vs Ag/AgCl (3.0 M KCl) and converted to vs
SCE (see SI for details).
J.-R. Chen, P.-Z. Wang, M.-N. Yang, D. Liang and W.-J. Xiao, 25 For a review of photoredox-catalysed arylation, see: I.
Angew. Chem. Int. Ed., 2018, 57, 738–743; c) E. M. Dauncey,
S. P. Morcillo, J. J. Douglas, N. S. Sheikh and D. Leonori,
Ghosh, L. Marzo, A. Das, R. Shaikh and B. König, Acc. Chem.
Res., 2016, 49, 1566–1577.
Angew. Chem. Int. Ed., 2018, 57, 744–748; d) C. Zhu, F. Chen, 26 a) R. A. Abramovitch and J. G. Saha, Tetrahedron, 1965, 21,
C. Liu, H. Zeng, Z. Yang, W. Wu and H. Jiang, J. Org. Chem.,
018, 83, 14713–14722; for a review, see: e) J. Davies, S. P.
Morcillo, J. J. Douglas and D. Leonori, Chem. Eur. J., 2018, 24,
2154–12163.
3297–3303; b) M. Gurczynski and P. Tomasik, Org. Prep.
Proced. Int., 1991, 23, 438–441; c) T. Sakakura, M. Hara and
M. Tanaka, J. Chem. Soc. Perkin Trans. 1, 1994, 283–288; d)
G. Iakobson, J. Du, A. M. Z. Slawin and P. Beier, Beilstein J.
Org. Chem., 2015, 11, 1494–1502.
2
1
1
1
1
2 T. Lund, D. D. M. Wayner, M. Jonsson, A. G. Larsen and K.
Daasbjerg, J. Am. Chem. Soc., 2001, 123, 12590–12595.
27 a) K. McCormack and K. Brune, Drugs, 1991, 41, 533–547; b)
I. V. Ukrainets and N. L. Bereznyakova, Chem. Heterocycl.
Comp., 2012, 48, 155–165; c) D. E. Schteingart, Expert Opin.
Emerging Drugs, 2009, 14; d) R. J. Santen, H. Brodie, E. R.
Simpson. P. K. Siiteri and A. Brodie, Endocr. Rev., 2009, 30,
343–375.
3 C. Lin, Y. Shen, B. Huang, Y. Liu and S. Cui, J. Org. Chem.,
2
017, 82, 3950−3956.
4 Whilst low molecular weight organic azides can potentially
be explosive, we have observed no issues of instability in
either the handling or storage of reagent 1. This compound
fulfills the ‘rule of six’: six carbons (or heavier atoms) per
energetic functional group, which has been empirically
observed to provide sufficient dilution to render such
compounds relatively inert. See: H. C. Kolb, M. G. Finn and K.
B. Sharpless, Angew. Chem. Int. Ed., 2001, 40, 2004–2021. To
probe the stability of compound 1, a 20 mg sample was
heated on an aluminium block. After melting at 33 °C, the
material appeared stable in the liquid state with no visible
decomposition up to ca 100 °C, whereupon it had
evaporated.
1
1
1
5 E. D. Nacsa and D. W. C. MacMillan, J. Am. Chem. Soc., 2018,
1
40, 3322–3330.
6 Φ values are the average of three experiments. See: a) M. A.
Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426–5434.
3 2
7 (a) Data for Ru(bpy) ·6H O: C. R. Bock, J. A. Connor, A. R.
Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K.
Nagle, J. Am. Chem. Soc., 1979, 101, 4815–4824; (b) Data for
3
fac-Ir(ppy) : L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura
and F. Barigelletti, Top. Curr. Chem., 2007, 281, 143–203.
8 L. Chenneberg, A. Baralle, M. Daniel, L. Fensterbank, J.-P.
Goddard and C. Ollivier, Adv. Synth. Catal., 2014, 356, 2756–
1
1
2
762.
9 (a) K. Okada, K. Okamoto, N. Morita, K. Okubo and M. Oda, J.
Am. Chem. Soc. 1991, 113, 9401–9402; (b) G. Pratsch, G. L.
Lackner and L. E. Overman, J. Org. Chem., 2015, 80, 6025–
6
036.
2
2
0 Data for Ir(5-Fppy) : K. Teegardin, J. I. Day, J. Chan and J.
3
Weaver, Org. Process Res. Dev., 2016, 20, 1156–1163.
1 31% yield with (+)-sodium L-ascorbate (1.5 eq.), 61% yield
1
without, as determined by H NMR analysis against 1,3-
benzodioxole as an internal standard.
2
2 For recent examples, see: a) J. Kim, J. Kwon, D. Lee, S. Jo, D.-
S. Park, J. Choi, E. Park, J. Y. Hwang, Y. Ko, I. Choi, M. K. Ju, J.
Ahn, J. Kim, S.-J. Han, T.-H. Kim, J. Cechetto, J. Nam, S. Ahn,
P. Sommer, M. Liuzzi, Z. No and J. Lee, Bioorg. Med. Chem.
Lett., 2013, 23, 153–157; b) G. Barker, R. Davenport, R.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins