Angewandte Chemie International Edition
10.1002/anie.201912567
COMMUNICATION
stage of the radio-synthesis, and the radiolabeled product can
be readily separated from the starting material due to the
pronounced polarity difference owing to the cationic sulfonium
[6]
(a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F.
Hartwig, Chem. Rev. 2010, 110, 890–931. (b) T. W. Lyons, M. S.
Sanford, Chem. Rev. 2010, 110, 1147–1169. (c) D. Leow, G. Li, T.-S.
Mei, J.-Q. Yu, Nature 2012, 486, 518–522. (d) C. Cheng, J. F. Hartwig,
Science 2014, 343, 853–857. (e) G. B. Boursalian, W. S. Ham, A. R
Mazzotti, T. Ritter, Nat. Chem. 2016, 8, 810–815.
1
8
salt. No carrier-added F-fluorination enabled the automated
18
synthesis of F-labeled compound 32 in high molar activity (1.4
−
1
19
Ci·µmol ). A Hammett analysis of the F-fluorination with aryl
dimethoxyldibenzothiophenium salts (Hammett-slope ρ = +3.4)
is consistent with a mechanism proceeding via C–F bond
reductive elimination from hypervalent sulfurane as previously
[7]
For selected examples, see: (a) Y. Ye, S. D. Schimler, P. S. Hanley, M.
S. Sanford, J. Am. Chem. Soc. 2013, 135, 16292–16295. (b) X. Huang,
W. Liu, H. Ren, R. Neelamegam, J. M. Hooker, J. T. Groves, J. Am.
Chem. Soc. 2014, 136, 6842−6845. (c) M. Tredwell, S. M. Preshlock,
N. J. Taylor, S. Gruber, M. Huiban, J. Passchier, J. Mercier, C. Génicot,
V. Gouverneur, Angew. Chem., Int. Ed. 2014, 53, 7751−7755. (d) B. D.
Zlatopolskiy, J. Zischler, P. Krapf, F. Zarrad, E. A. Urusova, E. Kordys,
H. Endepols, B. Neumaier, Chem. Eur. J. 2015, 21, 5972−5979. (e) X.
Huang, W. Liu, J. M. Hooker, J. T. Groves, Angew. Chem., Int. Ed.
8
d,15
suggested.
In conclusion, we developed
a
site-selective late-stage
1
8
aromatic
F-fluorination, enabled by selective C–H
a
dibenzothiophenylation reaction. We show for the first time how
a collection of three electronically different dibenzothiophenes
appropriately matched to the electronic requirements of the
arene can expand the substrate scope compared to prior art.
Beyond the immediate practicality of our method, the new
procedure developed herein may inspire the development of
diverse site-selective carbon–heteroatom bond formation.
2015, 54, 5241−5245. (f) A. V. Mossine, A. F. Brooks, K. J.
Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org.
Lett. 2015, 17, 5780−5783. (g) C. N. Neumann, J. M. Hooker, T. Ritter,
Nature 2016, 534, 369−373. (h) K. J. Makaravage, A. F. Brooks, A. V.
Mossine, M. S. Sanford, P. J. H. Scott, Org. Lett. 2016, 18, 5440−5443.
(
i) M. H. Beyzavi, D. Mandal, M. G. Strebl, C. N. Neumann, E. M.
D’Amato, J. Chen, J. M. Hooker, T. Ritter, ACS Cent. Sci. 2017, 3,
44−948. (j) M. S. McCammant, S. Thompson, A. F. Brooks, S. W.
Krska, P. J. H. Scott, M. S. Sanford, Org. Lett. 2017, 19, 3939−3942.
k) N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S.
Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc.
017, 139, 8267−8276. (l) J. Rickmeier, T. Ritter, Angew. Chem., Int.
9
(
Acknowledgements
2
We thank the Max-Planck-Institut für Kohlenforschung for
funding. We thank the HPLC and MS departments of the Max-
Planck-Institut für Kohlenforschung for technical assistance. We
thank Jonas Börgel and Matthew B. Plutschack (all from Max-
Planck-Institut für Kohlenforschung) for helpful discussions.
Ed. 2018, 57, 14207−14211.
[8]
(a) L. Mu, C. R. Fischer, J. P. Holland, J. Becaud, P. A. Schubiger, R.
Schibli, S. M. Ametamey, K. Graham, T. Stellfeld, L. M. Dinkelborg, L.
Lehmann, Eur. J. Org. Chem. 2012, 2012, 889−892. (b) K. Sander, T.
Gendron, E. Yiannaki, K. Cybulska, T. L. Kalber, M. F. Lythgoe, E.
Årstad, Sci. Rep. 2015, 5, 9941. (c) K. Sander, E. Galante, T. Gendron,
E. Yiannaki, N. Patel, T. L. Kalber, A. Badar, M. Robson, S. P.
Johnson, F. Bauer, S. Mairinger, J. Stanek, T. Wanek, C. Kuntner, T.
Kottke, L. Weizel, D. Dickens, K. Erlandsson, B. F. Hutton, M. F.
Lythgoe, H. Stark, O. Langer, M. Koepp, E. Årstad, J. Med. Chem.
18
Keywords: C–F bond formation • site-selectivity • F-labeling •
radiochemistry • late-stage C–H functionalization
2
015, 58, 6058−6080. (d) T. Gendron, K. Sander, K. Cybulska, L.
[
1]
2]
(a) A. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford, P. J. H.
Scott, Chem. Sci. 2014, 5, 4545−4553. (b) K. Chansaenpak, B. Vabre,
F. P. Gabbai, Chem. Soc. Rev. 2016, 45, 954−971. (c) S. Preshlock, M.
Tredwell, V. Gouverneur, Chem. Rev. 2016, 116, 719−766. (d) X.
Deng, J. Rong, L. Wang, N. Vasdev, L. Zhang, L. Josephson, S. H.
Liang, Angew. Chem., Int. Ed. 2019, 58, 2580−2605.
Benhamou, P. K. B. Sin, A. Khan, M. Wood, M. J. Porter, E. Årstad, J.
Am. Chem. Soc. 2018, 140, 11125−11132.
[
9]
(a) M. Hori, T. Kataoka, H. Shimizu, Yakugaku-Zasshi, 1973, 93, 476–
482. (b) M. Date, H. Kimura, J. Yamamoto, EP 1350789 B1, 2001.
[
10] (a) F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho,
N. Frank, T. Ritter, Nature 2019, 567, 223–228. (b) F. Ye, F. Berger, H.
Jia, J. Ford, A. Wortman, J. Börgel, C. Genicot, T. Ritter, Angew.
Chem., Int. Ed. 2019, 58, 14615–14619. (c) P. S. Engl, A. P. Häring, F.
Berger, G. Berger, A. Pérez-Bitrián, T. Ritter, J. Am. Chem. Soc. 2019,
[
(a) R. Chakravarty, H. Hong, W. Cai, Mol. Pharmaceutics 2014, 11,
3777−3797. (b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N.
A. Meanwell, J. Med. Chem. 2015, 58, 8315−8359. (c) D. A. Mankoff,
M. D. Farwell, A. S. Clark, D. A. Pryma, JAMA Oncol. 2017, 3,
141, 13346–13351. (d) R. Sang, S. E. Korkis, W. Su, F. Ye, P. S. Engl,
695−701. (d) H. H. Coenen, J. Ermert, Clin. Transl. Imaging 2018, 6,
F. Berger, T. Ritter, Angew. Chem., Int. Ed. 2019, 58, 16161–16166.
11] J. Li, J. Chen, R. Sang, W.-S. Ham, M. B. Plutschack, F. Berger, S.
Chabbra, A. Schnegg, C. Genicot, T. Ritter, Nat. Chem. 2019,
accepted.
1
69−193.
[
[
3]
4]
M. G. Campbell, J. Mercier, C. Genicot, V. Gouverneur, J. M. Hooker,
T. Ritter, Nat. Chem. 2017, 9, 1–3.
[
(a) E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B.
Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011,
[
12] For selected examples on aromatic C−H functionalization with activated
sulfoxide, see: (a) I. L. Baraznenok, V. G. Nenajdenko, E. S.
Balenkova, Tetrahedron, 2000, 56, 3077−3119. (b) J. A. Fernández-
Salas, A. P. Pulis, D. J. Procter, Chem. Commun. 2016, 52, 12364–
334, 639−642. (b) E. Lee, J. M. Hooker, T. Ritter, J. Am. Chem. Soc.
2012, 134, 17456−17458. (c) H. Ren, H.-Y. Wey, M. Strebl, R.
Neelamegam, T. Ritter, J. M. Hooker, ACS Chem. Neurosci. 2014, 5,
1
2367.
13] (a) J. Miller, Aromatic Nucleophilic Substitution, Elsevier: New York,
968. (b) F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-
611−615. (d) H. Lee, J. Börgel, T. Ritter, Angew. Chem., Int. Ed. 2017,
[
56, 6966−6969.
1
[5]
(a) F. Cacace, A. P. Wolf, J. Am. Chem. Soc. 1978, 100, 3639−3641.
b) G. Firnau, R. Chirakal, E. S. Garnett, J. Nucl. Med. 1984, 25,
228−1233. (c) K. Yamamoto, J. Li, J. Garber, A. O. J. D. Rolfes, G. B.
VCH 2013, e-book ISBN: 9783527656141.
(
[14] M.-C. Lasne, C. Perrio, J. Rouden, L. Barré, D. Roeda, F. Dolle, C.
Crouzel, Top. Curr. Chem. 2002, 222, 201–258.
1
Boursalian, J. C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese,
T. Ritter, Nature 2018, 554, 511−514. (d) W. Chen, Z. Huang, N. E. S.
Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. A. Nicewicz, Z. Li,
Science 2019, 364, 1170−1174.
[15] D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019,
119, 8701−8780.
This article is protected by copyright. All rights reserved.