2
450
T. Xu et al. / Carbohydrate Research 346 (2011) 2445–2450
The existence of 100 mM Na+ also shows a slight repression of
the antibacterial activity of quaternary ammonium chitosan
derivatives. As proposed by Tsai and Su,19 Na and chitosan, at high
concentration, form a complex which reduces the binding force be-
Acknowledgments
+
This research is supported by the National Natural Science
Foundation of China (No. 20574024), the Provincial Natural Science
Foundation of Fujian (E0810019, 2009J01029, and 2011J01312),
and the Key Projection of Science and Technology of Fujian Prov-
ince (2009H0030).
+
tween chitosan and the cell surface. In the same way, Na
(
100 mM) and quaternary ammonium chitosan derivatives in the
current study may have formed a complex. Moreover, the addition
of salt decreases the viscosity of the polymer solution due to the
reduction of the electrostatic repulsion by the positively charged
References
trimethylated amino groups.3
2,33
The decrease of the viscosity re-
1.
Rúnarsson, Ö. V.; Holappa, J.; Nevalainen, T.; Hjálmarsdóttir, M.; Järvinen, T.;
Loftsson, T.; Einarsson, J. M.; Jónsdóttir, S.; Valdimarsdóttir, M.; Másson, M. Eur.
Polymer J. 2007, 43, 2660–2671.
sults in a larger number of physical contacts between the macro-
molecules, which restricts the motion of each macromolecular
3
3
chain. Therefore, the antibacterial activity of chitosan and its
2. Lim, S. H.; Hudson, S. H. Carbohydr. Polym. 2004, 56, 227–234.
Mourya, V. K.; Inamdar, N. N. J. Mater. Sci.-Mater. Med. 2009, 20, 1057–1079.
3.
quaternary ammonium salt decreases with the addition of
+
4. Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J.
Chem. Rev. 2004, 104, 6017–6084.
5. Sieval, A. B.; Thanou, M.; Kotzé, A. F.; Verhoef, J. C.; Brussee, J.; Junginger, H. E.
Carbohydr. Polym. 1998, 36, 157–165.
1
00 mM Na .
The discrepancies among different reports on the antibacterial
activity of chitosan and its derivatives are probably caused by
various intrinsic and extrinsic factors that are related to the chito-
san itself (e.g., type, MW, DD, viscosity, solvent, and concentra-
tion) and the environmental conditions (e.g., test strain, its
physiological state and the bacterial culture medium, pH, temper-
ature, ionic strength, metal ions, EDTA, and organic matter),
6.
7.
8.
Lim, S. H.; Hudson, S. H. Carbohydr. Res. 2004, 334, 313–319.
Ali, S. A.; Singh, R. P. Macromol. Symp. 2009, 277, 1–7.
Kim, C. H.; Choi, J. W.; Chun, H. J.; Choi, K. S. Polym. Bull. 1997, 38, 387–393.
9. Jia, Z. S.; Shen, D. F.; Xu, W. L. Carbohydr. Res. 2001, 333, 1–6.
1
0. Avadi, M. R.; Sadeghi, A. M. M.; Tahzibi, A.; Bayati, K.; Pouladzadeh, M.;
Zohuriaan-Mehr, M. J.; Rafiee-Tehrani, M. Eur. Polymer J. 2004, 40, 1355–1361.
1. Seong, H. S.; Whang, H. S.; Ko, S. W. J. Appl. Polym. Sci. 2000, 76, 2009–2015.
1
2
0
respectively. Moreover, the quaternization of chitosan increases
the hydrophilicity of the chitosan derivatives, which leads to the
difficulty of obtaining anhydrous materials. This can be proven by
the first stage of thermal degradation (Fig. 4). Therefore, it is dif-
ficult to compare the current results with other quaternary
ammonium chitosan derivatives precisely. Only the relative trend
of the antibacterial activity of chitosan and its derivatives can be
compared.
12. Kim, Y. H.; Nam, C. W.; Choi, J. W.; Jang, J. J. Appl. Polym. Sci. 2003, 88, 1567–
572.
3. Chi, W. L.; Qin, C. Q.; Zeng, L. T.; Li, W.; Wang, W. J. Appl. Polym. Sci. 2007, 103,
51–3856.
1
1
8
14. Qin, C. Q.; Xiao, Q.; Li, H. R.; Fang, M.; Liu, Y.; Chen, X. Y.; Li, Q. Int. J. Biol.
Macromol. 2004, 34, 121–126.
15. Sajomsang, W.; Tantayanon, S.; Tangpasuthadol, V.; Daly, W. H. Carbohydr.
Polym. 2008, 72, 740–750.
16. Holappa, J.; Hjálmarsdóttir, M.; Másson, M.; Rúnarsson, Ö.; Asplund, T.;
Soininen, P.; Nevalainen, T.; Järvinen, T. Carbohydr. Polym. 2006, 65, 114–118.
17. Másson, M.; Holappa, J.; Hjálmarsdóttir, M.; Rúnarsson, Ö. V.; Nevalainen, T.;
Jävinen, T. Carbohydr. Polym. 2008, 74, 566–571.
4
. Conclusion
18. Tao, X.; Meihua, X.; Mingchun, L.; Huili, H.; Shengquan, Z. Carbohydr. Polym.
010, 81, 931–936.
2
1
2
9. Tsai, G. J.; Su, W. H. J. Food Protect. 1999, 62, 239–243.
0. Raafat, D.; Sahl, H. G. Microbiol. Biotechnol. 2009, 2, 186–201.
TMHTMAPC was synthesized successfully. The MIC of chitosan,
TMC, and TMHTMAPC was evaluated against E. coli and S. aureus
at pH 5.5 and 7.2. The effect of cations on the antibacterial activ-
ity was also investigated. All the quaternary ammonium chitosan
derivatives showed stronger antibacterial activity than chitosan.
TMHTMAPC exhibited enhanced antibacterial activity compared
with TMC, and the activity of TMHTMAPC increased with an in-
21. Chung, Y. C.; Wang, H. L.; Chen, Y. M.; Li, S. L. Bioresour. Technol. 2003, 88, 179–
84.
1
22. Verheul, R. J.; Amidi, M.; Wal, S.; Riet, E.; Jiskoot, W.; Hennink, W. E.
Biomaterials 2008, 29, 3642–3649.
23. Cai, Z. S.; Wang, J. T.; Yang, C. S.; Xu, Q.; Yang, J. R. Chemical world (China) 2005,
, 30–33.
1
2
2
4. Anders, L.; Staffan, W. Colloids Surf., A 1998, 139, 259–270.
5. Sun, L. P.; Du, Y. M.; Fan, L. H.; Chen, X.; Yang, J. H. Polymer 2006, 47, 1796–1804.
crease in DS. Divalent cations (Ba2 and Ca ) showed strongly
repressive effect on the antibacterial activity of chitosan, but
the repression was weaker in TMC, and TMHTMAPC. This indi-
cated that the quaternary ammonium groups of the quaternary
ammonium chitosan derivatives had a weaker interaction with
+
2+
26. Spinelli, V. A.; Laranjeira, M. C. M.; Fávere, V. T. React. Funct. Polym. 2004, 61,
347–352.
2
7. Sadeghi, A. M. M.; Amini, M.; Avadi, M. R.; Siedi, F.; Rafiee-Tehrani, M.;
Junginger, H. E. J. Bioact. Compat. Polym. 2008, 23, 262–275.
8. Wang, X. Y.; Du, Y. M.; Luo, J. W.; Yang, J. H.; Wang, W. P.; Kennedy, J. F.
Carbohydr. Polym. 2009, 77, 449–456.
2
29. Sun, S. L.; Wang, A. Q. React. Funct. Polym. 2006, 66, 819–826.
30. Chung, Y. C.; Chen, C. Y. Bioresour. Technol. 2008, 99, 2806–2814.
31. Wang, M.; Xu, L.; Zhai, M. L.; Peng, J.; Li, J. Q.; Wei, G. S. Carbohydr. Polym. 2008,
74, 498–503.
metal ions than with the free amino group. The existence of
+
1
00 mM Na caused a slight repression of the antibacterial activ-
ity of both chitosan and its quaternary ammonium derivatives,
+
32. Larsson, A.; Wall, S. Colloids Surf., A 1998, 139, 259–270.
3. Cho, J.; Grant, J.; Piquette-Miller, M.; Allen, C. Biomarcomolecules 2006, 7, 2845–
855.
because Na and the chitosan derivatives formed a complex that
3
reduced the binding force between the materials and the cell
surface.
2