SCHEME 1. Sulfonamides from Sulfonic Acids
An Easy Microwave-Assisted Synthesis of
Sulfonamides Directly from Sulfonic Acids
Lidia De Luca* and Giampaolo Giacomelli
Dipartimento di Chimica, UniVersità degli Studi di Sassari,
Via Vienna 2, I-07100 Sassari, Italy
ReceiVed February 21, 2008
to long-term storage.7 Just a few of these compounds are
commercially available because of their instability. Caddick and
co-workers reported a suitable preparation of sulfonamides by
intermolecular radical addition to pentafluorophenyl vinylsul-
fonate and successive aminolysis.8 Katritzky and co-workers
proposed a general and efficient synthesis of sulfonamides by
the reaction between sulfonylbenzotriazoles (produced from
sulfinic acid salts with N-chlorobenzotriazole) and various
amines.9 Recently the synthesis of heteroaryl sulfonamides via
oxidation of thiols to sulfonyl chlorides or sulfonyl fluorides
has been reported that were then reacted with amines to give
the corresponding sulfonamides.10 The logical way to sulfon-
amides could be the direct synthesis from sulfonic acid. Even
if pharmaceutical compounds containing a sulfonamide group
have numerous significant therapeutic applications, at present
just two methodologies are reported to convert a sulfonic acid
directly to a sulfonamide. The first method permits the synthesis
of sulfonamides from the sulfonic acid pyridine or triethylamine
salts by the use of the activating agent triphenylphosphine
ditriflate.11 The second procedure considers the reaction of a
sulfonic acid with isocyanide at room temperature.12
Following our interest in the use of 2,4,6-trichloro-[1,3,5]-
triazine (TCT) and [1,3,5]-triazine derivatives in organic syn-
thesis,13 we report here a novel, easy, and convenient method
for the preparation of sulfonamides directly from easily available
sulfonic acid (Scheme 1) or its sodium salt (Scheme 2),
improved by microwave irradiation.
The procedure consists of the addition of 1 equiv of TCT to
a mixture of 1 equiv of sulfonic acid and 1 equiv of trieth-
ylamine in acetone. Even if the reaction can be conducted in
refluxing acetone (20 h), we have preferred to carry out the
reaction under microwave irradiation in a sealed tube (10-mL
An easy and handy synthesis of sulfonamides directly from
sulfonic acids or its sodium salts is reported. The reaction is
performed under microwave irradiation, has shown a good
functional group tolerance, and is high yielding.
Sulfonamides are an important category of pharmaceutical
compounds with a broad spectrum of biological activities.1
Sulfonamides drugs have broad applications in many areas
of clinical medicine, as good antibacterials, diuretics, anticon-
vulsants, hypoglycemics, and HIV protease inhibitors.2
In recent times, sulfonamides have been found to be powerful
carbonic anhydrase,3 COX-2,4 and caspase inhibitors.5 A series
of aromatic sulfonamides have been prepared and crystallized
as chiral crystals.6 Typically, sulfonamides were prepared by
the reaction of a sulfonyl chloride with ammonia or primary or
secondary amines. However, sulfonyl chlorides have some
disadvantages, as they are not handled easily and are not suitable
(1) For a review, see: Hansch, C.; Sammes, P. G.; Taylor, J. B. Compre-
hensiVe Medicinal Chemistry; Pergamon Press: Oxford, 1990; Vol. 2, Chapter
7.1. (b) Connor, E. E. Sulfonamide Antibiotics prim. Care Update Ob. Gyn.
1998, 5, 32. (c) Hanson, p. R.; Probst, D. A.; Robinson, R. E.; Yau, M.
Tetrahedron Lett. 1999, 40, 4761.
(2) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical
Substances, Synthesis, Patents, Applications; Thieme: Stuggart, 1999. Guide,
2nd ed., available from Oxford Press.
(3) (a) Winum, J.-Y.; Dogné, J.-M.; Casini, A.; de Leval, X.; Montero,
J.-L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C. T. J. Med. Chem.
2005, 48, 2121. (b) Nishimori, I.; Minakuchi, T.; Morimoto, K.; Sano, S.; Onishi,
S.; Takeuchi, H.; Vullo, D.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2006,
49, 2117. (c) Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.;
Vullo, C.; Supuran, C. T.; Poulsen, S.-A. J. Med. Chem. 2007, 50, 1651.
(4) (a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt,
C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang,
Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775. (b) Habeeb,
A. G.; Praveen Rao, P. N.; Knaus, E. E. J. Med. Chem. 2001, 44, 3039. (c)
Almansa, C.; Bartrolí, J.; Belloc, J.; Cavalcanti, F. L.; Ferrando, R.; Gómez,
L. A.; Ramis, I.; Carceller, E.; Merlos, M.; García-Rafanell, J. J. Med. Chem.
2004, 47, 5579.
(7) (a) Caddick, S.; Wilden, J. D.; Wadman, S. J.; Bush, H. D.; Judd, D. B.
Org. Lett. 2002, 4, 2549. (b) Caddick, S.; Hamza, D.; Wadman, S.; Wilden,
J. D. Org. Lett. 2002, 4, 1775.
(8) Caddick, S.; Wilden, j. D.; Bush, H. d.; Wadman, S. N.; Judd, D. N.
Org. Lett. 2002, 4, 2549.
(9) Katritzky, A. R.; Rodriguez-Garcia, V.; Nair, S. K. J. Org. Chem. 2004,
69, 1849.
(10) Wright, S. W.; Hallstrom, K. N. J. Org. Chem. 2006, 71, 1080.
(11) Caddick, S.; Wilden, J. D.; Judd, D. B. J. Am. Chem. Soc. 2004, 126,
1024.
(5) (a) Chu, W.; Zhang, J.; Zeng, C.; Rothfuss, J.; Tu, Z.; Chu, Y.; Reichert,
D. E.; Welch, M. J.; Mach, R. H. J. Med. Chem. 2005, 48, 7637. (b) Chu, W.;
Rothfuss, J.; d’Avignon, A.; Zeng, C.; Zhou, D.; Hotchkiss, R. S.; Mach, R. H.
J. Med. Chem. 2007, 50, 3751.
(12) Shaabani, A.; Soleimani, E.; Rezayan, A. H. Tetrahedron Lett. 2007,
48, 2185.
(13) (a) De Luca, L.; Giacomelli, G.; Niueddu, G. J. Org. Chem. 2007, 72,
3955. (b) De Luca, L.; Giacomelli, G.; Porcheddu, A.; Salaris, M. Synlett 2004,
2570. (c) De Luca, L.; Giacomelli, G.; Masala, S.; Porcheddu, A. Synlett 2004,
2299. (d) De Luca, L.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 67,
6272. (e) De Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2002, 4, 553.
(6) Kato, T.; Okamoto, I.; Tanatani, A.; Hatano, T.; Uchiyama, M.;
Kagechika, H.; Masu, H.; Katagiri, K.; Tominaga, M.; Yamaguchi, K.; Azumaya,
I. Org. Lett. 2006, 8, 5017.
10.1021/jo800424g CCC: $40.75
Published on Web 04/08/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 3967–3969 3967