Page 3 of 3
Chemcomm
ChemComm
DOI: 10.1039/C4CC10348C
c
device optimization.Besides, the stability of DPA-based thin
Department of Chemistry, Beijing Normal University, Beijing 100875,
film transistors was also characterized. As shown in Fig. 4E, China;
d
the devices showed high stability over 3000 cycle, and
Department of Chemistry, National University of Singapore, 3 Science
negligible decrease can be observed for the devices even stored Drive 3, 117543, Singapore;
in air for 5 months (Fig. 4F and Fig. S4).
e Department of Chemistry, Tsinghua University, Beijing 100084, China;
f University of the Chinese Academy of Sciences, Beijing 100039, China;
gCollaborative Innovation Center of Chemical Science and Engineering
(Tianjin)& School of Science, Tianjin University, Tianjin 300072, China;
hDepartment of Chemistry, Capital Normal University, Beijing, 100037.
E-mail:dhl522@iccas.ac.cn; zgshuai@tsinghua.edu.cn;huwp@iccas.ac.cn
†
Electronic Supplementary Information (ESI) available: [Summery of
anthracene derivatives, synthesis procedures and characterization
details,transfer and typical output curves of the devices, contact resistance,
stability test and CIF of DPA.]. See DOI: 10.1039/c000000x/
1.
2.
(a) W. Hu, Organic Optoelectronics, Weinheim, Wiley-VCH,
Germany, 2013. (b) Z. Bao, J. Locklin, Organic Field-Effect
Transistors
,
CRC Press 2007. (c) K. Hagen, Organic Electronics:
Wiley-VCH, Germany,
Materials, Manufacturing and Applications
,
2007. (d) Q. Tang, Y. Tong, W. Hu et al. Adv. Mater. 2009, 21
4234-4237.
,
(a) H. Minemawari, T. Yamada, H. Matsuiet al. Nature 2011, 475
,
364-367. (b) V. C. Sundar, J. Zaumseil, V. Podzorovet al. Science
2004, 303, 1644-1646. (c) Y. Yuan,G. Giri,A. L. Ayzneret al. Nat.
Commun., 2014,
5, 3005. (d) M. Yamagishi, J. Takeya, Y.
Tominari, et al. Appl. Phys. Lett. 2007, 90, 182117.
Fig. 4 (A) Device schematic of DPA thin film OFETs, (B) typical output and (C)
transfer characteristics of the representative device. (D) The mobility distribution
of DPA thin film OFETs, (E) Continuous electrical test, VDS was -60 V, with VGS
switching from 0 V to -60 V. (F) Mobility and on/off ratio dependence on time.
3.
4.
(a) M. Watanabe, Y. J. Chang, S.-W. Liu et al. Nat. Chem. 2012, 4,
574-578. (b) J.-L. Brédas, D. Beljonne, V. Coropceanu et al. Chem.
Rev. 2004, 104, 4971-5003.
(a) A. Maliakal, K. Raghavachari, H. Katzet al. Chem. Mater. 2004,
16, 4980-4986. (b) L. B. Roberson, J. Kowalik, L. M. Tolbert et al.
J. Am. Chem. Soc. 2005, 127, 3069-3075. (c) W. Yue, A. F. Lv, J.
Gao et al., J. Am. Chem. Soc. 2012, 134, 5770-5773.
(a) M. Wang, J. Li, G. Zhao et al. Adv. Mater. 2013, 25, 2229-2233.
(b) J. E. Anthony, J. S. Brooks, D. L. Eatonet al. J. Am. Chem. Soc.
2001, 123, 9482-9483.
In summary, we have synthesized DPA in three simple and
controlled steps with a high yield, which demonstrates high
stability and dense molecule packing. Moreover, excellent
performance with 80% device mobilities over 10 cm2V-1s-1 and
the highest mobility up to 14.8 cm2 V-1s-1 was achieved for
DPA-based thin film devices. All these results indicate the great
potential of DPA for applications in organic electronics.
5.
6.
(a) K. Takimiya, S. Shinamura, I. Osaka et al. Adv. Mater. 2011, 23
4347-4370. (b) A. Y. Amin, A. Khassanov, K. Reuter et al. J. Am.
Chem. Soc. 2012, 134, 16548-16550.
,
We appreciated the profound discussion with Prof. Eiichi
Nakamura (Tokyo University), Prof. Henning Sirringhaus
(Cavendish Laboratory, Cambridge University) and Dr.
XinliangFeng (Max Planck Institute for Polymer Research).
The authors acknowledge the financial support from the
National Natural Science Foundation of China (51222306,
61201105, 91027043, 91222203, 91233205), TRR61 (NSFC-
DFG Transregio Project), the Ministry of Science and
Technology of China (2011CB808400, 2013CB933403,
2013CB933500), the Chinese Academy of Sciences, Beijing
local college innovation team improve plan (IDHT20140512)
and Beijing NOVA program (Z131101000413038)
7.
8.
Y. Diao, B. C. K. Tee, G. Giri et al. Nat. Mater. 2013, 12, 665-671.
(a) H. Moon, R. Zeis, E. J. Borkent et al. J. Am. Chem. Soc. 2004,
126, 15322-15323. (b) M.-C. Um, J. Jang, J. Kang et al. J. Mater.
Chem. 2008, 18, 2234-2239. (c) H. Klauk, U. Zschieschang, R. T.
Weitz et al. Adv. Mater. 2007, 19, 3882-3887. (d) H. Meng, F. Sun,
M. B. Goldfinger et al. J. Am. Chem. Soc. 2006, 128, 9304-9305. (e)
H. Meng, F. Sun, M. B. Goldfinger et al. J. Am. Chem. Soc. 2005,
127, 2406-2407.
9.
L. Jiang, W. Hu, Z. Wei et al. Adv. Mater. 2009, 21, 3649-3653.
10. (a) K. Takimiya, H. Ebata, K. Sakamoto et al. J. Am. Chem. Soc.
2006, 128, 12604-12605. (b) Y. S. Yang, T. Yasuda, H.Kakizoe et
al. Chem. Commun. 2013, 49, 6483-6485.
Notes and references
a
Beijing National laboratory for Molecular Sciences, Key Laboratory of
11. F. C. Spano, Acc. Chem. Soc. 2010, 43, 429-439.
12. (a) H. R Tseng et al. Adv. Mater. 2014, 2, 62993-2998. (b) H. Chen
et al. Adv. Mater. 2012, 24, 4618-4622. (c) J. Li et al. Sci. Rep.
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences,
Beijing 100190, China;
b
2012,
2, 754. (d) I. Kang, H.-J. Yun, D. S. Chung et al. J. Am.
Cavendish Laboratory, Cambridge University, JJ Thomson Avenue,
Chem. Soc.2013, 135, 14896-14899.
Cambridge CB3 0HE, UK;
This journal is © The Royal Society of Chemistry 2012
Chem. Commun., 2014, 00, 1-3 | 3