Communications
H. Grꢀger, M. Shibasaki, Angew. Chem. 1999, 111, 1672 – 1680;
Angew. Chem. Int. Ed. 1999, 38, 1570 – 1577.
[1] F. A. Cotton, G. Wilkinson, Anorganische Chemie, 4th ed.,
Verlag Chemie, Weinheim, 1982, p. 767.
[10] This strategy has already been demonstrated in asymmetric
sulfoxidations: Maruyama and co-workers used 1-methylimida-
zole with iron porphyrin catalysts,[6b,c] and Katsuki and co-
workers added methanol to Bolmꢁs vanadium catalyst (C. Ohta,
H. Shimizu, A. Kondo, T. Katsuki, Synlett 2002, 161 – 163). In
both cases improvements in enantioselectivities were observed,
whereas turnovers and yields did not increase. The use of those
additives in the iron-catalyzed reaction shown in Scheme 1 had a
negative effect.
[11] M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc.
2001, 123, 7194 – 7195.
[12] Sodium, potassium, cesium and tetrabutyl ammonium salts have
also been assessed in the oxidation of 2a: ANa4, 90% ee; AK4,
88% ee; ACs4, 87% ee; ABu4N4, 82% ee.
[2] For reviews on non-heme iron catalysts in oxidation reactions,
see: a) M. Fontecave, S. MØnage, C. Duboc-Toia, Coord. Chem.
Rev. 1998, 178–180, 1555 – 1572; b) M. Costas, K. Chen, L.
Que, Jr., Coord. Chem. Rev. 2000, 200–202, 517 – 544, and
references therein.
[3] For overviews on the use of hydrogen peroxide in oxidation
reactions, see: a) Catalytic Oxidations with Hydrogen Peroxide
as Oxidant (Ed.: G. Strukul), Kluwer Academic, Dordrecht,
1992; b) C. W. Jones, Applications of Hydrogen Peroxides and
Derivatives, Royal Society of Chemistry, Cambridge, 1999;
c) B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457 – 2473;
d) R. Noyori, M. Aoki, K. Sato, Chem. Commun. 2003, 1977 –
1986.
[13] In oxidations that give sulfoxides with high ee values (ꢀ 90%)
significant amounts of sulfone (ca. 15%) were detected in the
crude product. Preliminary studies revealed the existence of a
kinetic resolution process that enhances the inherent ee value of
the sulfoxide. This behavior contrasts that found in the original
process (without an additive[7]). Details of these findings will be
reported in due course.
[14] For a review on models for non-heme carboxylate-bridged diiron
metalloproteins, see: E. Y. Tshuva, S. J. Lippard, Chem. Rev.
2004, 104, 987 – 1012, and references therein.
[4] For reviews on asymmetric sulfoxidations, see: a) H. B. Kagan,
T. Luukas in Transition Metals for Organic Synthesis (Eds.: M.
Beller, C. Bolm), Wiley-VCH, Weinheim, 1998, pp. 361 – 373;
b) H. B. Kagan in Catalytic Asymmetric Synthesis, 2nd ed. (Ed.:
I. Ojima), Wiley-VCH, New York, 2000, pp. 327 – 356; c) C.
Bolm, K. Muæiz, J. P. Hildebrand in Comprehensive Asymmetric
Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto),
Springer, Berlin, 1999, pp. 697 – 713; d) for a recent review on
chiral sulfoxides, see: I. Fernµndez, N. Khiar, Chem. Rev. 2003,
103, 3651 – 3705.
[5] One of the most widely sold drugs in the world (with total sales
in 2002 of US$ 6.6 billion) is the chiral sulfoxide omeprazole. Its
enantioselective synthesis involves an asymmetric sulfide oxida-
tion. For a summary of recent developments and data, see: A. M.
Rouhi, Chem. Eng. News 2003, 81(19), 56 – 61.
[6] For other iron-catalyzed sulfoxidations, see: a) J. T. Groves, P.
Viski, J. Org. Chem. 1990, 55, 3628 – 3634; b) Y. Naruta, F. Tani,
K. Maruyama, J. Chem. Soc. Chem. Commun. 1990, 1378 – 1380;
c) Y. Naruta, F. Tani, K. Maruyama, Tetrahedron: Asymmetry
1991, 2, 533 – 542; d) L.-C. Chiang, K. Konishi, T. Aida, S. Inoue,
J. Chem. Soc. Chem. Commun. 1992, 254 – 256; e) Q. L. Zhou,
K. C. Chen, Z. H. Zhu, J. Mol. Catal. 1992, 72, 59 – 65; f) C.
Duboc-Toia, S. MØnage, C. Lambeaux, M. Fontecave, Tetrahe-
dron Lett. 1997, 38, 3727 – 3730; g) C. Duboc-Toia, S. MØnage,
R. Y. N. Ho, L. Que, Jr., M. Fontecave, Inorg. Chem. 1999, 38,
1261 – 1268; h) Y. Mekmouche, H. Hummel, R. Y. N. Ho, L.
Que, Jr., V. Schünemann, F. Thomas, A. X. Trautwein, C.
Lebrun, K. Gorgy, J.-C. LeprÞtre, M.-N. Collomb, A. Deronzier,
M. Fontecave, S. MØnage, Chem. Eur. J. 2002, 8, 1196 – 1204.
[7] J. Legros, C. Bolm, Angew. Chem. 2003, 115, 5645 – 5647; Angew.
Chem. Int. Ed. 2003, 42, 5487 – 5489.
[8] Schiff bases of this type have also been used in vanadium-
catalyzed asymmetric sulfide oxidations with H2O2. Most
interestingly, the same ligand 3 (derived from 3,5-di-iodosalicy-
ladehyde) that is optimal for the V-catalyzed asymmetric sulfur
oxidation is also optimal in the iron-promoted process. For the
vanadium-catalyzed reaction, see: a) C. Bolm, F. Bienewald,
Angew. Chem. 1995, 107, 2883– 2885; Angew. Chem. Int. Ed.
Engl. 1995, 34, 2640 – 2642; b) C. Bolm, G. Schlingloff, F.
Bienewald, J. Mol. Catal. A 1997, 117, 347 – 350; c) C. Bolm, F.
Bienewald, Synlett 1998, 34, 1327 – 1328; d) B. Pelotier, M. S.
Anson, I. B. Campbell, S. J. F. Macdonald, G. Priem, R. F. W.
Jackson, Synlett 2002, 1055 – 1060; e) S. A. Blum, R. G. Berg-
man, J. A. Ellman, J. Org. Chem. 2003, 68, 150 – 155; f) D. J.
Weix, J. A. Ellman, Org. Lett. 2003, 5, 1317 – 1320; g) for a
review, see: C. Bolm, Coord. Chem. Rev. 2003, 237, 245 – 256,
and references therein.
[9] For an interesting list of additives used in metal-catalyzed
epoxidation with hydrogen peroxide, see reference [3c]; for a
general review on additive effects in catalysis, see: E. M. Vogl,
4228
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 4225 –4228