J. Gao et al. / Tetrahedron Letters 48 (2007) 8453–8455
8455
Table 2. L3–Ti (IV) catalyzed asymmetric oxidation of prochiral
sulfidesa
synthesis has been extended to the oxidation of prochi-
ral thioethers.
O
Ti(O-i-Pr)4:L3=1:4
S
S
R1
R2
R1
R2
*
Acknowledgement
CHP, CH2Cl2, -20 °C, 16h
Entry
R1
C6H5
4-MeC6H4
4-MeOC6H4
4-ClC6H4
4-Br–C6H4
4-NO2
R2
Yieldb (%)
eec (%)
Financial support from the National Natural Science
Foundation of China (Grant No. 20472111) is gratefully
acknowledged.
1
2
3
4
5
6
7
8
9
Me
62
66
77
91
82
70
96
80
78
95d
90d
81d
99e
95f
96f
88d
57d
33d
Me
Me
Me
Me
Me
Me
Et
References and notes
2-Naphthyl
C6H5
C6H5
´
1. (a) Pellissier, H. Tetrahedron 2006, 62, 5559; (b) Fernandez,
I.; Khiar, N. Chem. Rev. 2003, 103, 3651; (c) Ellman, J. A.;
Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2001, 35, 984;
(d) Davis, F. A.; Zhou, P.; Chen, B. C. Chem. Soc. Rev.
1998, 27, 13; (e) Kjaer, A. Pure Appl. Chem. 1997, 49, 137;
Bn
a 50 mol % catalyst was used.
b Isolated yield.
c Ees were determined by using chiral HPLC analysis. The absolute
configurations were determined as S by comparison of the HPLC
results with the data in the literature.
´
´
(f) Carreno, M. C. Chem. Rev. 1995, 95, 1717; (g) Solladie,
G. Synthesis 1981, 185.
2. (a) Kagan, H. B.; Rebiere, F. Synlett 1990, 643; (b) Kagan,
H. B. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.,
Ed.; Wiley-VCH: New York, 2000; p 327; (c) Bolm, C.;
d By Chiralcel OD-H column (hexane/i-PrOH = 90:10).
e By Chiralcel AS-H column (hexane/i-PrOH = 80:20).
f By Chiralcel OD-H column (hexane/i-PrOH = 99:1).
´
Muniz, K.; Hildebrand, J. P. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. II, p 697; (d) Kagan, H. B.;
Luukas, T. O. In Transition Metals for Organic Synthesis,
2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim,
2004; Vol. 2, p 479; (e) Legros, J.; Dehli, J. R.; Bolm, C.
Adv. Synth. Catal. 2005, 347, 19; (f) Ba¨ckvall, J.-E. In
Modern Oxidation Methods; Ba¨ckvall, J.-E., Ed.; Wiley-
VCH: Weinheim, 2004; p 193.
results indicated that the reaction system has some
tolerance to the pattern and electronic properties of
the substituent on the phenyl ring of substrates. It
is worth noting that the enantiomeric excesses are in
general compared to the corresponding low molecular
template. Sulfides with benzyl or ethyl showed lower
enantioselectivity than that with methyl (entries 8
and 9).
3. (a) Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984,
325; (b) Pitchen, P.; Kagan, H. B. Tetrahedron Lett. 1984,
25, 1049; (c) Pitchen, P.; Dunnach, E.; Desmukh, M. N.;
˜
Kagan, H. B. J. Am. Chem. Soc. 1984, 106, 8188.
4. Thakur, V. V.; Sudalai, A. Tetrahedron: Asymmetry 2003,
14, 407.
In our experiment, 1H NMR spectroscopic analysis
showed that the recovered tartrates have the same char-
acteristic peaks as before the reaction, indicating that in
principle the soluble polymer-supported ligand might be
reused. Ligand L3 was recycled four times, and the ees
of first recycle to fourth recycle were 95%, 94%, 93%
and 91%, respectively, and the isolated yields remained
at 62–67%. The recovery of catalyst can be carried out
by simple precipitation and filtration. The ligands were
stable and generally the recovery was >97%. During
the work-up, the product can be directly extracted with
diethyl ether after the reaction was quenched, and this
greatly simplifies the isolation of products.
5. (a) Wang, X. S.; Wang, X. W.; Guo, H. C.; Wang, Z.; Ding,
K. L. Chem. Eur. J. 2005, 11, 4078; For reviews about self-
supported concept, see: (b) Ding, K. L.; Wang, Z.; Wang,
X. W.; Liang, Y. X.; Wang, X. S. Chem. Eur. J. 2006, 12,
5188; (c) Dai, L. X. Angew. Chem., Int. Ed. 2004, 43, 5726.
6. (a) Gravert, D. J.; Janda, K. D. Chem. Rev. 1997, 97, 489;
(b) Wentworth, P., Jr.; Janda, K. D. Chem. Commun. 1999,
1917; (c) Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem.
Rev. 2002, 102, 3325; (d) Bergbreiter, D. E.; Sung, S. D.
Adv. Synth. Catal. 2006, 348, 1352.
7. (a) Guo, H. C.; Shi, X. Y.; Qiao, Z.; Hou, S. C.; Wang, M.
Chem. Commun. 2002, 118; (b) Guo, H. C.; Shi, X. Y.;
Wang, X.; Liu, S. Z.; Wang, M. J. Org. Chem. 2004, 69,
2042; (c) Reed, N. N.; Dickerson, T. J.; Boldt, G. E.; Janda,
K. D. J. Org. Chem. 2005, 70, 1728.
In summary, the asymmetric oxidation of prochiral thi-
oethers with cumyl hydroperoxide catalyzed by a soluble
polymer-supported Ti-catalyst provides a simple and
effective procedure for the preparation of chiral sulfox-
ides in good enantiomeric purity. The previous concept
of constructing chiral ligand library by liquid-phase
8. Ikeda, N.; Arai, I.; Yamamoto, H. J. Am. Chem. Soc. 1986,
108, 483.
9. (a) Brunel, J. M.; Kagan, H. B. Synlett 1996, 404; (b)
Brunel, J.-M.; Diter, P.; Duetsch, M.; Kagan, H. B. J. Org.
Chem. 1995, 60, 8086.