4
Tetrahedron Letters
-
NO
2
could form a nitrogen dioxide radical in the presence of
. Without addition of K , (E)-β-nitrostryene was
(e) Wu, M.-Y.; Wang, M.-Q.; Li, K.; Feng, X.-W.; He, T.; Wang, N.;
Yu, X.-Q. Tetrahedron Lett. 2011, 52, 679-683; (f) Yan, R.-L.; Yan,
H.; Ma, C.; Ren, Z.-Y.; Gao, X.-A.; Huang, G.-S.; Liang, Y.-M. J.
Org. Chem. 2012, 77, 2024-2028; (g) Rahmani-Nezhad, S.; Safavi, M.;
Pordeli, M.; Ardestani, S. K.; Khosravani, L.; Pourshojaei, Y.;
Mahdavi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Eur. J. Med.
Chem. 2014, 86, 562-569; (h) Denmark, S. E.; Thorarensen, A. Chem.
Rev. 1996, 96, 137-165; (i) Arai, T.; Mishiro, A.; Yokoyama, N.;
Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338-5339; (j)
Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C.;
Davis, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2012, 134, 2543-
2546.
K
2
S
2
O
8
2 2 8
S O
almost not detected by GC and GC-MS (Scheme 2a). When the
radical inhibitor, 2,6-di-tert-butyl-4-methylphenol (BHT) was
added in the standard reaction, trace product was detected
(Scheme 2b). This result indicated that the reaction presumably
underwent a radical pathway. And another control experiment
showed that the nitro product was not obtained without TEMPO
(Scheme 2c). For further research the role of TEMPO, N-
hydroxyphthalimide (NHPI) was added into this reaction to
replace TEMPO, and (E)-β-nitrostryene was obtained in 12%
yield (Scheme 2d). It indicated that TEMPO could abstract the
hydrogen atom like phthalimide-N-oxyl radical (PINO) which
could be generated from NHPI under oxidation condition . And
the intermediate TEMPOH was also detected by GC-MS .
3.
(a) Larock, R. C. Comprehensive Organic Transformations; John
Wiley and Sons, Inc., New York, 1999; (b) Ballini, R.; Petrini, M.
Tetrahedron 2004, 60, 1017-1047; (c) Corma, A.; Serna, P.; García, H.
J. Am. Chem. Soc. 2007, 129, 6358-6359; (d) Zheng, B.; Wang, H.;
Han, Y.; Liu, C.-L.; Peng, Y.-G. Chem. Commun. 2013, 49, 4561-
4563; (e) Quan, X.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett.
14
15
2
014, 16, 5728-5731.
6c,
Based on the above experimental results and previous reports
4
.
Tinsley, S. W. J. Org. Chem. 1961, 26, 4723-4724.
8c, 9, 11, 13, 16
,
a plausible mechanism is proposed and shown in
5.
(a) Jovel, I.; Prateeptongkum, S.; Jackstell, R.; Vogl, N.; Weckbecker,
C.; Beller, M. Adv. Synth. Catal. 2008, 350, 2493-2497; (b) Suzuki, H.;
Mori, T. J. Org. Chem. 1997, 62, 6498-6502; (c) Bryant, D. K.;
Challis, B. C.; Iley, J. J. Chem. Soc., Chem. Commun. 1989, 1989,
-
2-
2 2 8
Scheme 3. Firstly, NO reacted with S O to generate a nitrogen
dioxide radical, and then the free radical added to the carbon–
carbon double bond of alkene to afford the intermediate A.
TEMPO abstracted the hydrogen atom next to nitro group, and
the carbon–carbon double bond was formed. Though the
plausible mechanism is supported, more details still need to be
1
027-1028.
6
.
(a) Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Synlett 2014, 25, 603-
607; (b) Sy, W.-W.; By, A. W. Tetrahedron Lett. 1985, 26, 1193-1196;
(c) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D.
J. Am. Chem. Soc. 2013, 135, 3355-3358.
studied.
7
8
.
.
Kancharla, P. K.; Reddy, Y. S.; Dharuman, S.; Vankar, Y. D. J. Org.
Chem. 2011, 76, 5832-5837.
(a) Varma, R. S.; Naicker, K. P.; Liesen, P. J. Tetrahedron Lett. 1998,
3
2
9, 3977-3980; (b) Taniguchi, T.; Fujii, T.; Ishibashi, H. J. Org. Chem.
010, 75, 8126-8132; (c) Naveen, T.; Maity, S.; Sharma, U.; Maiti, D.
J. Org. Chem. 2013, 78, 5949-5954.
9
1
.
Begari, E.; Singh, C.; Nookaraju, U.; Kumar, P. Synlett 2014, 25, 1997-
2
000.
0. (a) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294-6295;
b) Hwu, J. R.; Chen, K.-L.; Ananthan, S.; Patel, H. V.
Scheme 3. Proposed mechanism of nitration method.
(
Organometallics 1996, 15, 499-505; (c) Campos, P. J.; García, B.;
Rodríguez, M. A. Tetrahedron Lett. 2000, 41, 979-982.
1. Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384-
In summary, an efficient transition-metal-free,
2 2 8
K S O -
mediated direct nitration of alkenes with NaNO in the presence
2
1
of TEMPO was developed. A wide range of alkenes including
styrenes, heterocyclic and aliphatic alkenes were compatible
under this condition, affording (E)-nitroalkenes in moderate to
good yields. Moreover, the effect of the stereostructures of alkene
on the stereoselectivity of nitro products were also studied: even
though the proportion of (E)- and (Z)- substrates is different, the
E/Z ratio of the resulting nitro products is almost the same.
3
387.
12. (a) Ghosh, D.; Nichols, D. E. Synthesis 1996, 1996, 195-197; (b)
Hlekhlai, S.; Samakkanad, N.; Sawangphon, T.; Pohmakotr, M.;
Reutrakul, V.; Soorukram, D.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org.
Chem. 2014, 2014, 7433-7442.
1
3. Li, Y.-M.; Wei, X.-H.; Li, X.-A.; Yang, S.-D. Chem. Commun. 2013,
9, 11701-11703.
14. (a) Sheldon, R. A.; Arends, I. W. C. E. J. Mol. Catal. A: Chem. 2006,
4
2
3
51, 200-214; (b) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800-
842; (c) Lee, J.-M.; Park, E.-J.; Cho, S.-H.; Chang, S. J. Am. Chem.
Acknowledgment
Soc. 2008, 130, 7824–7825; (d) Orlińska, B. Tetrahedron Lett. 2010,
1, 4100-4102; (e) Zhao, H.-Q.; Sun, W.; Miao, C.-X.; Zhao, Q.-Y. J.
5
We are grateful for the financial support from the National
Natural Science Foundation of China (21372068, 21572049).
Mol. Catal. A: Chem. 2014, 393, 62-67.
1
1
5. (a) Henry-Riyad, H.; Tidwell, T. T. J. Phys. Org. Chem. 2003, 16, 559-
5
63; (b) Chan, K.-S.; Li, X.-Z.; Dzik, W. I.; Bruin, B. d. J. Am. Chem.
References
Soc. 2008, 130, 2051–2061.
6. (a) Vogler, T.; Studer, A. Synthesis 2008, 2008, 1979-1993; (b)
Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901-16910;
1
.
(a) Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751-762;
b) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH,
(
(c) Hartmann, M.; Li, Y.; Studer, A. J. Am. Chem. Soc. 2012, 134,
Weinheim, Germany, 2001; (c) Bui, T.; Syed, S.; Barbas, C. F.
J. Am. Chem. Soc. 2009, 131, 8758-8759; (d) Lu, L.-Q.; Chen, J.-R.;
Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278-1293.
1
8
6516-16519; (d) Li, Y.; Studer, A. Angew. Chem., Int. Ed. 2012, 51,
221-8224; (e) He, Z.-H.; Kirchberg, S.; Fröhlich, R.; Studer, A.
Angew. Chem., Int. Ed. 2012, 51, 3699-3702; (f) Hoover, J. M.;
Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357-2367;
2
.
(a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110,
5
447-5674; (b) Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Org.
(
2
g) Manna, S.; Maity, S.; Rana, S.; Agasti, S.; Maiti, D. Org. Lett.
012, 14, 1736-1739; (h) Manna, S.; Jana, S.; Saboo, T.; Maji, A.;
Maiti, D. Chem. Commun. 2013, 49, 5286-5288.
Lett. 2012, 14, 4580-4583; (c) Yan, M.-C.; Jang, Y.-J.; Yao, C.-F.
Tetrahedron Lett. 2001, 42, 2717-2721; (d) Ishii, T.; Fujioka, S.;
Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558-9559;