NJC
The recyclability of the Rh–Co/NPC nanocatalyst was explored for
Paper
10 R. K. Rai, K. Gupta, D. Tyagi, A. Mahata, S. Behrens, X. Yang,
Q. Xu, B. Pathak and S. K. Singh, Catal. Sci. Technol., 2016, 6,
5567–5579.
11 H. Miyamura, A. Suzuki, T. Yasukawa and S. Kobayashi,
J. Am. Chem. Soc., 2018, 140, 11325–11334.
12 L. Luo, H. Li, Y. Peng, C. Feng and J. Zeng, ChemNanoMat,
2018, 4, 451–466.
the C–Se coupling reaction using phenyl boronic acid and diphenyl
diselenide under the optimized conditions. After the reaction, the
nanocatalyst was separated and collected by centrifugation and
reused for five cycles. Fig. 5 shows that the Rh–Co/NPC catalytic
activity is still high without any significant decrease in yield. To
verify the stability and durability of Rh–Co/NPC, the catalyst was
recovered after the catalytic reaction and analyzed using TEM, as
shown in Fig. S9 (ESI†). After the reaction, Rh–Co/NPC main-
tained its original structure and did not undergo severe particle
aggregation.
13 S. Chandra, S. Bag, R. Bhar and P. Pramanik, J. Nanopart.
Res., 2011, 13, 2769–2777.
14 C. Song, A. Yang, O. Sakata, L. S. R. Kumara, S. Hiroi,
Y. T. Cui, K. Kusada, H. Kobayashi and H. Kitagawa,
Phys. Chem. Chem. Phys., 2018, 20, 15183–15191.
15 G. Cahiez and A. Moyeux, Chem. Rev., 2010, 110,
1435–1462.
16 X. Q. Cao, J. Zhou, S. Li and G. W. Qin, Rare Met., 2020, 39,
113–130.
17 K. H. Park and Y. K. Chung, Adv. Synth. Catal., 2005, 347,
854–866.
18 M. Gopiraman, S. Saravanamoorthy, S. Ullah, A. Ilangovan,
I. S. Kim and I. M. Chung, RSC Adv., 2020, 10, 2545–2559.
19 K. H. Park, I. G. Jung, S. Y. Kim and Y. K. Chung, Org. Lett.,
2003, 5, 4967–4970.
20 K. H. Park, I. G. Jung and Y. K. Chung, Org. Lett., 2004, 6,
1183–1186.
Conclusions
The Rh–Co/NPC nanocatalyst (ca. 6 nm) was simply synthesized
through a one-pot thermal decomposition method. The high
catalytic activity was investigated for the C–Se coupling reaction
with various arylboronic acid reactants. In addition, this nano-
catalyst was active toward the hydrogenation of p-nitrophenol
over a short reaction time (B6 min). The catalyst was used for
5 cycles of the C–Se coupling reaction without any noticeable
decrease in product yields.
21 J. H. Park, E. Kim and Y. K. Chung, Org. Lett., 2008, 10,
4718–4721.
Conflicts of interest
22 J. H. Park, J. C. Yoon and Y. K. Chung, Adv. Synth. Catal.,
2009, 351, 1233–1237.
There are no conflicts to declare.
23 I. Choi, H. Chung, J. W. Park and Y. K. Chung, Org. Lett.,
2016, 18, 5508–5511.
Acknowledgements
24 E. Y. Kim, T. W. Chung, C. W. Han, S. Y. Park, K. H. Park,
S. B. Jang and K. T. Ha, Sci. Rep., 2019, 9, 1–12.
25 Y. Nagpal, R. Kumar and K. K. Bhasin, J. Chem. Sci., 2015,
127, 1339–1346.
26 H. Zhang, Y. Zhao, W. Liu, S. Gao, N. Shang, C. Wang and
Z. Wang, Catal. Commun., 2015, 59, 161–165.
27 H. Zhang, S. Gao, N. Shang, C. Wang and Z. Wang, RSC Adv.,
2014, 4, 31328–31332.
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) grant
funded by the Korea Government (MSIP) (NRF-2020R1I1A3067208).
H.-K. L. and J. C. P. at KIER were supported by the Research and
Development Program of the Korea Institute of Energy Research
(KIER) (No. C1-2478).
28 J. Li, L. Zhang, X. Liu, N. Shang, S. Gao, C. Feng, C. Wang
and Z. Wang, New J. Chem., 2018, 42, 9684–9689.
29 M. Wang, K. Ren and L. Wang, Adv. Synth. Catal., 2009, 351,
1586–1594.
References
´
1 V. F. Puntes, E. Gonzalez and J. Arbiol, Science, 2011, 334,
1377–1380.
30 K. Harsha Vardhan Reddy, G. Satish, K. Ramesh,
K. Karnakar and Y. V. D. Nageswar, Chem. Lett., 2012, 41,
585–587.
2 X. Liu, D. Wang and Y. Li, Nano Today, 2012, 7, 448–466.
3 I. Choi, S. Chun and Y. K. Chung, J. Org. Chem., 2017, 82,
12771–12777.
31 N. Taniguchi and T. Onami, J. Org. Chem., 2004, 69,
915–920.
32 N. Taniguchi, J. Org. Chem., 2007, 72, 1241–1245.
33 W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao and C. Wang,
Catal. Commun., 2017, 90, 70–74.
4 A. Zaleska-Medynska, M. Marchelek, M. Diak and
E. Grabowska, Adv. Colloid Interface Sci., 2016, 229, 80–107.
5 Y. Shi, X. Zhang, Y. Zhu, H. Tan, X. Chen and Z. H. Lu,
RSC Adv., 2016, 6, 47966–47973.
6 J. Wisniewska and M. Ziolek, RSC Adv., 2017, 7, 9534–9544.
7 K. McNamara and S. A. M. Tofail, Phys. Chem. Chem. Phys.,
2015, 17, 27981–27995.
34 H. Liu, H. Liu, J. Yang, H. Zhai, X. Liu and H. Jia, Ceram. Int.,
2019, 45, 20133–20140.
35 S. A. Hira, M. Nallal and K. H. Park, Sens. Actuators, B, 2019,
298, 126861.
8 N. Basavegowda, T. K. Mandal and K. H. Baek, Food Biopro-
cess Technol., 2020, 13, 30–44.
36 S. A. Hira, H. S. Hui, Y. Mohammad and K. H. Park,
Catal. Commun., 2020, 141, 106011.
9 N. Muthuchamy, S. Jang, J. C. Park, S. Park and K. H. Park,
ACS Sustainable Chem. Eng., 2019, 7, 15526–15536.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
New J. Chem., 2021, 45, 7959–7966 | 7965