Journal of the American Chemical Society
Communication
catalyzed hydroboration of N-benzylideneaniline with HBpin in
heptane at 70 °C for <12 h afforded N-benzyl-N-pinacolboryl-
aniline in quantitative yield (entry 1, Table 2). MOF-Mg
recovered after this reaction remained crystalline, as shown by
PXRD (Figure 2b), and the leaching of Mg and Zr into the
supernatant was 2.2% and 0.07%, respectively. The hydro-
boration of substituted imines, however, required higher catalyst
loading and longer reaction times (entries 2−5, Table 2),
presumably due to the decreased rates of diffusion of the larger
substrates and products through the MOF channels.
supported by the U.S. DOE under Contract No. DE-AC02-
06CH11357.
REFERENCES
■
(1) Schlenk, W.; Schlenk, W. Ber. Dtsch. Chem. Ges. B 1929, 62, 920.
(2) (a) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc.,
Dalton Trans. 2001, 222. (b) Avent, A. G.; Crimmin, M. R.; Hill, M. S.;
Hitchcock, P. B. Dalton Trans. 2004, 3166. (c) Crimmin, M. R.; Casely,
I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042.
(
3) Datta, S.; Roesky, P. W.; Blechert, S. Organometallics 2007, 26,
392.
4) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15,
558.
5) Liu, B.; Roisnel, T.; Gueg
Chem. - Eur. J. 2012, 18, 6289.
4
(
2
TPHN-MOF-Mg is also an active catalyst for hydro-
6
,23
amination/cyclization of aminoalkenes.
The treatment of
MOF-MgMe with 10 equiv (wrt Mg) of 2,2-bis(2-propenyl)-4-
pentenylamine in benzene at room temperature generated an
(
́
an, J.-P.; Carpentier, J.-F.; Sarazin, Y.
equivalent amount of CH , presumably due to the formation of
(6) Dunne, J. F.; Fulton, D. B.; Ellern, A.; Sadow, A. D. J. Am. Chem.
Soc. 2010, 132, 17680.
4
Mg-amidoalkene species (section 5, SI). Upon heating the
reaction mixture at 80 °C for 2 d, 4,4-diallyl-2-methylpyrrolidine
was obtained in essentially quantitative yield (entry 1, Table 3).
ICP-MS analyses of the pyrrolidine product showed very low
metal leaching (0.82% for Mg and 0.02% for Zr). At a 1.0 mol %
Mg loading, MOF-Mg also afforded 4,4-diphenyl-2-methyl-
pyrrolidine and 4-allyl-2-methyl-4-phenylpyrrolidine from 2,2-
diphenyl-4-penten-1-amine and 2-allyl-2-phenylpent-4-enyl-
amine, respectively, in excellent yields (entries 2 and 3, Table 3).
In summary, we have developed the first MOF-supported
single-site main group catalyst for organic transformations. Site
isolation of the heteroleptic compounds at MOF nodes is the key
to affording highly active, robust, and reusable alkaline earth
metal catalysts. Due to the diversity of metal cluster SBUs and the
ease of functionalizing SBUs with metal ions, MOFs may offer a
versatile platform for discovering new catalytic transformations
and developing earth-abundant metal catalysts for sustainable
synthesis of fine and commodity chemicals.
(
7) Mukherjee, A.; Nembenna, S.; Sen, T. K.; Sarish, S. P.; Ghorai, P.
K.; Ott, H.; Stalke, D.; Mandal, S. K.; Roesky, H. W. Angew. Chem., Int.
Ed. 2011, 50, 3968.
(
8) Buch, F.; Brettar, J.; Harder, S. Angew. Chem., Int. Ed. 2006, 45,
741.
9) Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; Kociok-Kohn, G.
Chem. Commun. 2012, 48, 4567.
10) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.;
2
(
(
Procopiou, P. A. Organometallics 2007, 26, 2953.
(11) Gauvin, R. M.; Buch, F.; Delevoye, L.; Harder, S. Chem. - Eur. J.
2009, 15, 4382.
(
12) (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;
O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. (b) Rosi, N. L.;
Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O.
M. Science 2003, 300, 1127. (c) Suh, M. P.; Park, H. J.; Prasad, T. K.;
Lim, D.-W. Chem. Rev. 2012, 112, 782.
(
13) (a) Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.;
Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45,
390. (b) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.;
1
Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112,
724.
ASSOCIATED CONTENT
Supporting Information
■
(14) (a) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112,
*
S
1
196. (b) Gascon, J.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X.
́
ACS Catal. 2014, 4, 361. (c) Manna, K.; Zhang, T.; Carboni, M.; Abney,
C. W.; Lin, W. J. Am. Chem. Soc. 2014, 136, 13182. (d) Manna, K.;
Zhang, T.; Greene, F. X.; Lin, W. J. Am. Chem. Soc. 2015, 137, 2665.
Experimental details and characterization data, MOF-
and catalyst recycle/reuse procedures (PDF)
(15) (a) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511. (b) Wang,
C.; Zhang, T.; Lin, W. Chem. Rev. 2012, 112, 1084.
(
(
16) He, C.; Liu, D.; Lin, W. Chem. Rev. 2015, 115, 11079.
17) (a) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van
X-ray crystallographic data for TPHN-MOF (CIF)
Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. (b) Hu, Z.;
Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815.
AUTHOR INFORMATION
(
18) (a) He, C.; Liu, D.; Lin, W. Chem. Rev. 2015, 115, 11079.
b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur,
P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
(
́
Author Contributions
K.M., P.J., and F.X.G. contributed equally.
(19) Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982.
†
(20) Zhang, T.; Manna, K.; Lin, W. J. Am. Chem. Soc. 2016, 138, 3241.
(21) Mukherjee, D.; Ellern, A.; Sadow, A. D. Chem. Sci. 2014, 5, 959.
Notes
(
22) Arrowsmith, M.; Hill, M. S.; Kociok-Kohn, G. Chem. - Eur. J. 2013,
̈
The authors declare no competing financial interest.
1
(
(
(
9, 2776.
23) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
b) Hannedouche, J.; Schulz, E. Chem. - Eur. J. 2013, 19, 4972.
c) Schafer, L. L.; Yim, J. C. H.; Yonson, N. Transition-Metal-Catalyzed
ACKNOWLEDGMENTS
■
This work was supported by National Science Foundation (NSF,
grant no. CHE-1464941). We thank Z. Lin, D. Micheroni, and C.
Poon for experimental help. Single-crystal diffraction studies
were performed at ChemMatCARS, APS, Argonne National
Laboratory (ANL). ChemMatCARS is principally supported by
the Divisions of Chemistry and Materials Research, NSF, under
grant no. NSF/CHE-1346572. Use of the Advanced Photon
Source, an Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by ANL, was
Hydroamination Reactions.Metal-Catalyzed Cross-Coupling Reactions
and More; Wiley-VCH: Weinheim2014; pp 1135−1258. (d) Crimmin,
M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.; Hill, M. S.;
Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670. (e) Mu
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108,
795.
̈
ller, T. E.;
3
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX