Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC10172K
ARTICLE
Journal Name
substrates such as 19 is likely, it is not yet possible to infer the vFAS: its fundamental mechanisms for substate reaction and
stereochemical preference of the C-MeT without further stereoselectivity are also preserved and reinforce the idea that
experiments. Our previous results have shown that the SQTKS fungal hr-PKS and vFAS evolved from a common ancestor. Our
ER domain can process both Z 22 and E 23 substrates. current work focusses on determining the stereochemical
However since the DH can only provide E-diketides it appears preference of the CMeT domain and attempts at engineering
1
0
that the ER's ability to accept Z-olefins is merely adventitious.
SQTKS to rationaly change its selectivity.
In our earlier study of the stereoselectivity of the ER
domain we showed that the stereochemical preferences at the
Acknowledgements
β-carbon are identical for SQTKS ER and vFAS ER, in terms of
both the cofactor itself (transfer of 4'-pro-R Hydrogen) and the
We thank EPSRC (EP/F066104/1) for LCMS equipment, BBSRC
(BB/I003355/1) for funding AS and BrisSynBio Synthetic
Biology Research Centre, (BB/L01386X/1) for funding L-CH. EL
and DI were funded by the School of Chemistry, University of
Bristol. We thank Dr J. E. Nettleship at the Oxford Protein
Production Facility (OPPF) for assistance with protein
production. Hao Yao and Oliver Piech (LUH) are thanked for
technical assistance.
1
0
substrate (addition of hydride to to the 3-Re face). The
results of this study also show that the SQTKS DH has exactly
the same stereochemical selectivity as the vFAS DH which
dehydrates 2R,3R substrates 20 to give E-products 23 by syn
2
2
elimination. Even though the SQTKS substrate is methylated
at the 2-position, the 2R stereochemistry ensures that the 2-
pro-S proton is removed during reaction. Our model structure
shows that the 2R,3R substrate aligns with the active site
residues such that syn elimination gives the observed E-
product. The active site residues involved, H1034, D1225,
Y1041 and P1042 are conserved between the SQTKS and vFAS
sequences.
Notes and References
1
.
B. Bonsch, V. Belt, C. Bartel, N. Duensing, M. Koziol, C. M. Lazarus, A. M.
Bailey, T. J. Simpson and R. J. Cox, Chem. Commun., 2016, 52, 6777–
6
780.
OH
O
2
3
.
.
P. J. Sidebottom, R. M. Highcock, S. J. Lane, P. A. Procopiou and N. S.
Watson, J. Antibiot., 1992, 45, 648–658.
L. Hendrickson, C. R. Davis, C. Roach, D. K. Nguyen, T. Aldrich, P. C.
McAda and C. D. Reeves, Chem. Biol., 1999, 6, 429–439.
R. J. Cox, Org. Biomol. Chem., 2007, 5, 2010–2026.
SACP
18
Re
CMeT
Si
O
4
5
.
.
Y.-H. Chooi and Y. Tang, J. Org. Chem., 2012, 77, 9933–9953.
O
O
O
?
6. R. J. Cox, F. Glod, D. Hurley, C. M. Lazarus, T. P. Nicholson, B. A. M.
Rudd, T. J. Simpson, B. Wilkinson and Y. Zhang, Chem. Commun., 2004,
2260–2261.
SACP
SACP
H
Me
Me H
2R-19
2S-19
7
.
E. J. Skellam, D. Hurley, J. Davison, C. M. Lazarus, T. J. Simpson and R. J.
Cox, Mol. BioSyst., 2010, 6, 680–682.
M. Leibundgut, T. Maier, S. Jenni and N. Ban, Curr. Opin. Struct. Biol.,
KR NADPH (unknown hydride)
KR NADPH
Si
Re
Si
O
Re
8
.
2
008, 18, 714–725.
OH
O
OH
H
O
OH
Me
O
HO
H
9. K. M. Fisch, A. M. Bailey, W. Bakeer, A. A. Yakasai, Z. Song, J. Pedrick, Z.
Wasil, C. M. Lazarus, T. J. Simpson and R. J. Cox, J. Am. Chem. Soc., 2011,
133, 16635–16641.
0. D. M. Roberts, C. Bartel, A. Scott, D. Ivison, T. J. Simpson and R. J. Cox,
Chem. Sci., 2017, in press. DOI 10.1039 /c6sc03496a
SACP
SACP
SACP
SACP
Me
H
Me
H
H
Me
R,3R-20
2
2R,3S-21
DH syn
2S,3R-21
2S,3S-20
1
1
1. R. C. Harris, A. L. Cutter, K. J. Weissman, U. Hanefeld, M. I. C. Timoney
and J. Staunton, J. Chem. Res., 1998, 283–283; I. E. Holzbaur, A.
Ranganathan, I. P. Thomas, D. J. Kearney, J. A. Reather, B. A. Rudd, J.
Staunton and P. F. Leadlay, Chem. Biol., 2001, 8, 329–340.
O
O
H
SACP
22
DH syn
H
DH syn
12. D. E. Cane, F. Kudo, K. Kinoshita and C. Khosla, Chem. Biol., 2002, 9,
31–142.
1
SACP 23
1
3. Y. Li, G. J. Dodge, W. D. Fiers, R. A. Fecik, J. L. Smith and C. C. Aldrich, J.
Am. Chem. Soc., 2015, 137, 7003–7006.
ER NADPH (4'-pro-R hydride)
1
4. N. Kandziora, J. N. Andexer, S. J. Moss, B. Wilkinson, P. F. Leadlay and F.
Hahn, Chem. Sci., 2014, 5, 3563–3567; G. Berkhan and F. Hahn, Angew.
Chem. Int. Ed., 2014, 53, 14240–14244.
5. G. Fráter, U. Müller and W. Günther, Tetrahedron, 1984, 40, 1269–1277.
6. M. A. Walker and C. H. Heathcock, J. Org. Chem., 1991, 56, 5747-5750.
7. J. W. Labonte and C. A. Townsend, Chem. Rev., 2013, 113, 2182–2204.
H
H
OH
SACP
H
H
O
2
H O
1
1
1
SACP
H
Me
24
25
Scheme 3. Stereochemical course of KR, DH and ER domains of SQTKS.
18. D. L. Akey, J. R. Razelun, J. Tehranisa, D. H. Sherman, W. H. Gerwick and
J. L. Smith, Structure, 2010, 18, 94–105.
1
9. M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F.
Kiefer, T. G. Cassarino, M. Bertoni, L. Bordoli and T. Schwede, Nucleic
Acids Research, 2014, 42, W252-W258.
Finally, the SQTKS KR domain also operates with the same
2
stereochemical preference as the vFAS KR. Although we have
2
not yet been able to show which of the cofactor 4'-hydrides is 20. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.
2
1. E. Krieger, K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, M. Tyka, D.
Baker and K. Karplus, Proteins, 2009, 77, 114-122.
2. V. E. Anderson and G. G. Hammes, Biochemistry, 1984, 23, 2088–2094.
transferred by KR, the reduction does occur at the 3-Si face of
the substrate. Thus our studies show that SQTKS shares more
than just sequence homology and domain organisation with
2
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins