H. J. Szekeres et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2871–2875
2875
clearly demonstrates that a C3-substituent is crucial for
high a5-subtype binding affinity, with the unsubstituted
analogue exhibiting 50-foldlower a5 affinity. The
introduction of a second methyl substituent at C3 does
not improve affinity (cf. thiomethyl analogues 13
5. Sur, C.; Quirk, K.; Dewar, D.; Atack, J. R.; McKernan,
R. M. Mol. Pharmacol. 1998, 54, 928–933.
6
7
. Collinson, N.; Kuenzi, F. M.; Jarolimek, W.; Maubach,
K. A.; Cothliff, R.; Sur, C.; Smith, A.; Otu, F. M.; Howell,
O.; Atack, J. R.; McKernan, R. M.; Seabrook, G. R.;
Dawson, G. R.; Whiting, P. J.; Rosahl, T. W. J. Neurosci.
(
a profoundeffect on the GABA
K ða5Þ: 7.5 nM) and 22 (K ða5Þ: 19 nM) but it does have
i
i
2
002, 22, 5572–5580.
A
a5 efficacy––convert-
ing an antagonist (13, L(tk ) efficacy: +2%) into an
. Crestani, F.; Keist, R.; Fritschy, J.-M.; Benke, D.; Vogt,
K.; Prut, L.; Bluthmann, H.; Mohler, H.; Rudolph, U.
Proc. Natl. Am. Sci. 2002, 99, 8980–8985.
ꢁ
ꢁ
inverse agonist (22, L(tk ) efficacy: )32%). Throughout
the course of the programme a variety of C3-gem-di-
methyl derivatives were synthesised but they had unac-
8. Dorow, R.; Horowski, R.; Paschelke, G.; Amin, M.;
Braestrup, C. Lancet 1983, 2, 98–99.
9
1
. Petersen, E. N. Eur. J. Pharmacol. 1983, 94, 117–124.
0. Little, H. J.; Nutt, D. J.; Taylor, S. C. Br. J. Pharmacol.
984, 83, 951–958.
ceptably low a5-subtype affinity (i.e., K > 10 nM) and,
i
as a consequence, were not pursuedany further. It
shouldbe notedthat for all those compoun sd that
possess a single C3 methyl group the data given in the
tables are for the racemic mixture. However, the pyridyl
derivative 9 has been resolvedinto its ini dv iud al
enantiomers using chiral HPLC. The data obtained for
these enantiomers showedthat whilst there was an order
of magnitude difference in their a5-subtype binding
1
1
1. Chambers, M. S.; Atack, J. R.; Bromidge, F. A.; Brough-
ton, H. B.; Cook, S.; Dawson, G. R.; Hobbs, S. C.;
Maubach, K. A.; Reeve, A. J.; Seabrook, G. R.; Wafford,
K.; MacLeod, A. M. J. Med. Chem. 2002, 45, 1176–1179.
2. Chambers, M. S.; Atack, J. R.; Broughton, H. B.;
Collinson, N.; Cook, S.; Dawson, G. R.; Hobbs, S. C.;
Marshall, G.; Maubach, K. A.; Pillai, G. V.; Reeve, A. J.;
MacLeod, A. M. J. Med. Chem. 2003, 46, 2227–2240.
3. Bryant, H. J.; Chambers, M. S.; Hobbs, S. C. U.S. Patent
1
affinity (K
i
values 0.5 and10 nM) there was no signifi-
ꢁ
1
1
1
1
cant efficacy difference (L(tk ) efficacy: +6% and+18%).
6
,156,761, 2000.
4. Nishiyama, T.; Kameoka, H. Chem. Express 1991, 6,
09–113.
5. Sebok, P.; Timar, T.; Eszenyi, T.; Patonay, T. Synthesis
994, 837–840.
6. For the synthesis of 15, 5-chloro-3-chloromethyl-1,2,4-
thiadiazole was the alkylating agent used in step (d) of
Scheme 2. During the reaction, methoxide displaced the
chloride on the thiadiazole.
From the selectedanalogues shown in the tables it is
clear that relatively minor structural changes at different
positions on the tetralone core couldpro du ce a signifi-
1
1
cant effect on GABA
A
a5 efficacy. However, it was
foundthat these structure–efficacy observations were
not consistent across the series, andas a consequence a
robust structure–efficacy relationship was not estab-
lished.
17. Compound 17 was synthesisedfrom the SEM-protected
triazole analogue using 5-chloromethyl-1-{[2-(trimethyl-
silyl)ethoxy]methyl}-1H-1,2,3-triazole as the alkylating
agent in step (d) of Scheme 2. The SEM group was
removedby reaction with 2 N HCl in ethanol at reflux.
In summary, a series of 3,4-dihydronaphthalen-1(2H)-
ones has been identified as a novel class of ligands at
the BZ site of GABAA receptors, with higher binding
affinity for receptors containing the a5-subunit com-
paredto the a1, a2 and a3-containing subtypes. Within
the series compounds with a range of efficacies were
identified, from the a5-subtype agonist 19 through
partial agonists andantagonists to the a5-subtype
inverse agonist 22.
1
8. Chatterjee, A.; Hazra, B. G. Tetrahedron 1980, 36, 2513–
519.
2
1
9. Hadingham, K. L.; Wingrove, P.; Le Bourdelles, B.;
Palmer, K. J.; Ragan, C. I.; Whiting, P. J. Mol. Pharma-
col. 1993, 43, 970–975.
20. Casula, M. A.; Bromidge, F. A.; Pillai, G. V.; Wingrove,
P. B.; Martin, K.; Maubach, K.; Seabrook, G. R.;
Whiting, P. J.; Hadingham, K. L. J. Neurochem. 2001,
7
7, 445–451.
2
1. Hadingham, K. L.; Garret, E. M.; Wafford, K. A.; Bain,
C.; Heavens, R. P.; Sirinathsinghji, D. J. S.; Whiting, P. J.
Mol. Pharmacol. 1996, 49, 253–259.
References and notes
1
. Barnard, E. A.; Skolnick, P.; Olsen, R. W.; Mohler, H.;
Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A. N.;
Langer, S. Z. Pharmacol. Rev. 1999, 50, 291–313.
. Bonnert, T. P.; McKernan, R. M.; Farrar, S.; Le Bourd-
elles, B.; Heavens, R. P.; Smith, D. W.; Hewson, L.;
Rigby, M. R.; Sirinathsinghji, D. J. S.; Brown, N.;
Wafford, K. A.; Whiting, P. J. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 9891–9896.
22. Horne, A. L.; Hadingham, K. L.; Macaulay, A. J.;
Whiting, P.; Kemp, J. A. Br. J. Pharmacol. 1992, 107,
732–737.
2
23. Lui, R.; Zhang, P.; McKernan, R. M.; Wafford, K.; Cook,
J. M. Med. Chem. Res. 1995, 5, 700–709.
ꢁ
24. Since efficacy recordings using L(tk ) cells provided full
concentration–response curves this methodof efficacy
measurement was preferredto that obtainedusing
oocytes. It shouldbe notedthat obtaining concentra-
tion–response curves in oocytes is a problematic process,
3
. Farrar, S. J.; Whiting, P. J.; Bonnert, T. P.; McKernan,
R. M. J. Biol. Chem. 1999, 274, 10100–10104.
4
. McKernan, R. M.; Whiting, P. J. Trends Neurosci. 1996,
9, 139–143.
due to the rapid de-sensitisation of the GABA receptor at
A
relatively high concentrations.
1