Synthesis of 2H-Indazoles via Lewis Acid
SCHEME 1. Cyclization of Conjugated “Ene-Ene-Yne”
Moieties
Promoted Cyclization of
2-(Phenylazo)benzonitriles
Laura D. Shirtcliff, Jazmin Rivers, and Michael M. Haley*
Department of Chemistry, UniVersity of Oregon,
Eugene, Oregon 97403-1253
2
a,b. The respective carbenes can then be trapped through the
ReceiVed May 9, 2006
6
usual carbene trapping methods, i.e., reaction with dioxygen,
O-H insertion, C-H insertion, [2 + 1] cycloaddition with
alkenes, etc. Our interest in isoindazoles not only stems from
the unique methodology through which they are attained but
also because of their increasing applicability in a variety of fields
such as ligands for estrogen receptors, as antiinflammatories,
as DNA intercalators for antitumor applications, as chemo-
therapeutics, and as liquid crystalline materials.
1
b
7
1
b
8
9
1
0
1
1
12
Previous coarctate cyclizations from our laboratory all relied
on an alkyne moiety as the triply bonded portion of the
conjugated azo-ene-yne system. To fully explore the applicabil-
ity of the cyclization methodology, we have investigated the
effect upon reactivity that changing the C≡CH portion of the
conjugated system to C≡N (1c) would have, and also have
studied the potential for generating nitrene intermediates such
as 3. For clarity, coarctate (Latin for compressed) cyclizations
are defined by the presence of a coarctate atom where two bonds
are being made and two bonds are being broken and that bond
making and breaking do not occur in a cyclic array, thus setting
them apart from pericyclic reactions. In certain instances, a
reaction may be considered not truly coarctate (i.e., pseudoco-
Lewis-acid promoted “coarctate” cyclization of 10 2-(phenyl-
azo)benzonitrile derivatives furnishes the isoindazole ring
system in ca. 65-95% yield. A plausible mechanism for this
unusual transformation is proposed.
Our laboratory,1 among others,2 has been investigating
compounds with a conjugated “ene-ene-yne” functionality for
the formation of novel five- or six-membered benzo-fused
heterocycles. The main body of our research has primarily
exploited thermal or Cu-induced cyclization of conjugated azo-
ene-yne moieties (1a,b, Scheme 1) to afford uniquely substituted
arctate) based upon the orthogonality of the interacting orbitals
or previously unknown isoindazoles1 or bis-isoindazoles.
a,b
1c
1b,c,7b
in a planar transition state. Previous reports
have explicitly
Typically, these heterocycles are prepared using strong acids
in polar solvents to form a diazonium species susceptible to
outlined the difference between the two; therefore, the di-
chotomy between coarctate and pseudocoarctate and how it
relates to this specific system will not be discussed herein.
Synthetic trials began with the preparation of cyclization
3
nucleophilic attack by an activated ortho-carbon nucleophile.
Such vigorous conditions in turn limit the functional group
tolerance of these types of reactions. Our cyclizations, however,
1b
precursor 5a. Iodide 4a, readily available in two synthetic
4
5
proceed under neutral conditions by coarctate /pseudocoarctate
mechanistic pathways via isoindazolyl carbene intermediates
steps, was subjected to nucleophilic aromatic substitution with
13
excess CuCN in EtOH. While complete consumption of 4a
required 40 h in refluxing EtOH, switching to higher boiling
(1) (a) Kimball, D. B.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem.
2
002, 67, 6395-6405. (b) Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M.
M.; Kohler, F.; Herges, R. J. Org. Chem. 2004, 69, 6979-6985. (c)
Shirtcliff, L. D.; Hayes, A. G.; Haley, M. M.; Koehler, F.; Hess, K.; Herges,
R. J. Am. Chem. Soc., in press.
(6) Kimball, D. B.; Hayes, A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825-
3827.
(7) (a) Kimball, D. B.; Herges, R.; Haley, M. M. J. Am. Chem. Soc.
2002, 124, 1572-1573. (b) Kimball, D. B.; Weakley, T. J. R.; Herges, R.;
Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463-13473.
(8) de Angelis, M.; Stossi, F.; Carlson, K. A.; Katzenellenbogen, B. S.;
Katzenellenbogen, J. A. J. Med. Chem. 2005, 48, 1132-1144.
(9) Steffan, R. J.; Matelan, E.; Ashwell, M., A.; Moore, W. J.; Solvible,
W. R.; Trybulski, E.; Chadwick, C. C.; Chippari, S.; Kenney, T.; Ecker,
A.; Borger-Marcucci, L.; Keith, J. C.; Xu, Z.; Mosyak, L.; Harnish, D., C.
J. Med. Chem. 2004, 47, 6435-6438.
(10) Sharples, D.; Hajos, G.; Riedl, Z.; Csanyi, D.; Molnar, J.; Szabo,
D. Arch. Pharm. 2001, 334, 269-274.
(11) Edwards, G. L.; Black, D. S. C.; Deacon, G. B.; Wakelin, L. P. G.
Can. J. Chem. 2005, 83, 969-979.
(2) Inter alia: (a) Uemura, S.; Miki, K.; Washitake, Y.; Ohe, K. Angew.
Chem., Int. Ed. 2004, 43, 1857-1860. (b) Uemura, S.; Nishino, F.; Miki,
K.; Kato, Y.; Ohe, K. Org. Lett. 2003, 5, 2615-2617. (c) Uemura, S.; Miki,
K.; Yokoi, T.; Nishino, F.; Ohe, K. J. Organomet. Chem. 2002, 645, 228-
2
1
6
1
34. (d) Nakatani, K.; Adachi, K.; Tanabe, K.; Saito, I. J. Am. Chem. Soc.
999, 121, 8221-8228. (e) Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999,
4, 1344-1346. (f) Jiang, D.; Herndon, J. W. Org. Lett. 2000, 2, 1267-
269. (g) Zhang, Y.; Herndon, J. W. Org. Lett. 2003, 5, 2043-2045. (h)
Sheridan, R. S.; Khasanova, T. J. Am. Chem. Soc. 2000, 122, 8585-8586.
(
3) (a) Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic
Chemistry; Elsevier Science Ltd.: Oxford, 2000. (b) Joule, J. A.; Mills, K.
Heterocyclic Chemistry; Blackwell: Oxford, UK, 2000. (c) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions,
Syntheses, and Application; Wiley-VCH: Weinheim, Germany, 2003.
4) (a) Herges, R. J. Chem. Info. Comput. Sci. 1994, 34, 91-102. (b)
Herges, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 255-276.
5) Birney, D. M. J. Am. Chem. Soc. 2000, 122, 10917-10925.
(12) (a) Canlet, C.; Khan, M. A.; Fung, B. M.; Roussel, F.; Judeinstein,
P.; Bayle, J.-P. New J. Chem. 1999, 23, 1223-1230. (b) Berdague, P.;
Judeinstein, P.; Bayle, J. P.; Nagaraja, C. S.; Sinha, N.; Ramanathan, K. V.
Liq. Cryst. 2001, 28, 197-205.
(
(
(13) Roling, P. J. Org. Chem. 1975, 40, 2421-2425.
1
0.1021/jo060965m CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/26/2006
J. Org. Chem. 2006, 71, 6619-6622
6619