is effective, for example, perfluoropentacene,2c hexafluoro-
hexa-peri-hexabenzocoronene,4 and 2,6-bis(4-trifluorometh-
ylphenyl)anthracene.5 Furthermore, electron-withdrawing
imide substituents yield naphthalene-, anthracene-, and
perylene-based materials.6 Electron-deficient heterocyclic
compounds such as pyrazinoquinoxaline7 and anthrazoline8
are investigated as building blocks for electron-transporting
materials. On the other hand, BF2 complexes have been
studied as potential electron-transporting materials.9 In these
compounds, the BF2-chelating moieties behave as electron-
accepting units.9c An OFET device that uses a BF2 complex
with 1,6-diphenyl-1,3,4,6-hexanetetrone exhibits an n-type
semiconducting behavior.9a We synthesize BF2 complexes
containing tetracene (1) and perylene (2) as new types of
electron-deficient arene compounds (Scheme 1). The BF2
chelation contributes toward electron withdrawal and π-elec-
tron delocalization of the tetracene and perylene moieties,
as represented by the resonance contributors 1A and 2A.10
The quadrupolar structures yield small HOMO-LUMO
energy gaps.11 These molecules have rigid, planar structures
leading to effective intermolecular π-π overlap in the solid
state. In this paper, we report the synthesis and properties
of BF2 complexes 1 and 2 and the application of 1 to OFET
devices.
Scheme 1. Structures of BF2 Complexes 1 and 2
The synthesis of BF2 complexes 1 and 2 was performed
by chelation of 6,11-dihydroxy-5,12-naphthacenedione
(DHND)12 and 4,9-dihydroxy-3,10-perylenedione (DHPD)13
with boron trifluoride-diethyl etherate (BF3·OEt2). Com-
pound 1 was obtained in the form of red crystals with a yield
of 61% after sublimation at 400 °C under 10-3 Torr.
Compound 2 was prepared as a dark red solid with a crude
yield of 88%, but it could not be sublimed. Compound 1
was slightly soluble in common organic solvents such as
chloroform, dichloromethane, DMF, toluene, and acetonitrile,
whereas compound 2 was insoluble in common solvents and
very slightly soluble in DMF and acetonitrile. The structure
of 1 was determined by 1H NMR, IR, and EI mass
spectrometry and elemental analysis. The structure of 2 was
determined by IR and MALDI-TOF mass spectrometry. The
molecular ion peak of 2 was observed by using the negative
mode (see Supporting Information) instead of the positive
mode. This suggests that compound 2 had high electron
affinity. Both compounds were stable in air in the solid state.
The stability of 1 to moisture considerably increased as
compared to that of the BF2 complex of 1,4-dihydroxyan-
thraquinone (quinizarin), which decomposed in air in the
solid state within 5 h. The BF2-chelating moieties of 1 and
2 were thermally stable in the solid state under nitrogen. The
differential scanning calorimetry (DSC) of 1 revealed a
melting point of 368.6 °C. The thermogravimetric analysis
(TGA) of 2 exhibited the decomposition of a BF2 moiety
between 350 and 450 °C. The melting point of 1 was
comparable to those of DHND (mp 351 °C) and tetracene
(mp 357 °C), suggesting the strong intermolecular π-π
interactions.
(2) (a) Ando, S.; Murakami, R.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito,
S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996. (b) Ando, S.;
Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem.
Soc. 2005, 127, 5336. (c) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao,
Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126,
8138. (d) Naraso; Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita, Y. J. Am.
Chem. Soc. 2006, 128, 9598. (e) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti,
A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348. (f) Handa, S.; Miyazaki,
E.; Takimiya, K.; Kunugi, Y. J. Am. Chem. Soc. 2007, 129, 11684. (g)
Facchetti, A.; Deng, Y.; Wang, A.; Koide, Y.; Sirringhaus, H.; Marks, T. J.;
Friend, R. H. Angew. Chem., Int. Ed. 2000, 39, 4547. (h) Ie, Y.; Nitani,
M.; Ishikawa, M.; Nakayama, K.; Tada, H.; Kaneda, T.; Aso, Y. Org. Lett.
2007, 9, 2115.
(3) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. ReV. 2004, 104,
4891.
(4) Kikuzawa, Y.; Mori, T.; Takeuchi, H. Org. Lett. 2007, 9, 4817.
(5) Ando, S.; Nishida, J.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.;
Yamashita, Y. Chem. Mater. 2005, 17, 1261.
(6) (a) Tatemichi, S.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. Appl.
Phys. Lett. 2006, 89, 112108. (b) Jones, B. A.; Facchetti, A.; Wasielewski,
M. R.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259. (c) Chen, H. Z.;
Ling, M. M.; Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Chem. Mater. 2007,
19, 816. (d) Wang, Z.; Kim, C.; Facchetti, A.; Marks, T. J. J. Am. Chem.
Soc. 2007, 129, 13362. (e) Jones, B. A.; Facchetti, A.; Marks, T. J.;
Wasielewski, M. R. Chem. Mater. 2007, 19, 2703. (f) Jones, B. A.; Ahrens,
M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew.
Chem., Int. Ed. 2004, 43, 6363.
(7) Nishida, J.; Naraso; Murai, S.; Fujiwara, E.; Tada, H.; Tomura, M.;
Yamashita, Y. Org. Lett. 2004, 6, 2007.
(8) Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A. J. Am.
Chem. Soc. 2003, 125, 13548.
(9) (a) Sun, Y.; Rohde, D.; Liu, Y.; Wan, L.; Wang, Y.; Wu, W.; Di,
C.; Yu, G.; Zhu, D. J. Mater. Chem. 2006, 16, 4499. (b) Domercq, B.;
Grasso, C.; Maldonado, J.-L.; Halik, M.; Barlow, S.; Marder, S. R.;
Kippelen, B. J. Phys. Chem. B 2004, 108, 8647. (c) Ono, K.; Yoshikawa,
K.; Tsuji, Y.; Yamaguchi, H.; Uozumi, R.; Tomura, M.; Taga, K.; Saito,
K. Tetrahedron 2007, 63, 9354.
(10) (a) Haddon, R. C.; Chichester, S. V.; Marshall, J. H. Tetrahedron
1986, 42, 6293. (b) Mandal, S. K.; Samanta, S.; Itkis, M. E.; Jensen, D. W.;
Reed, R. W.; Oakley, R. T.; Tham, F. S.; Donnadieu, B.; Haddon, R. C.
J. Am. Chem. Soc. 2006, 128, 1982.
(12) Tomura, M.; Yamaguchi, H.; Ono, K.; Saito, K. Acta Crystallogr.
2008, E64, o172.
(11) Briseno, A. L.; Miao, Q.; Ling, M.-M.; Reese, C.; Meng, H.; Bao,
Z.; Wudl, F. J. Am. Chem. Soc. 2006, 128, 15576.
(13) Cameron, D. W.; Chan, H. W.-S. J. Chem. Soc. C 1966, 1825.
150
Org. Lett., Vol. 11, No. 1, 2009