Paper
RSC Advances
purging with N
2
, the vial was charged with 0.5 mL of DMF and
S. Knapp, J. J. Hale, M. Bastos, A. Molina and K. Y. Cheng,
J. Org. Chem., 1992, 57, 6239.
stirred at room temperature for 10 min. A solution of 0.6 mmol
of aryl halide and 0.5 mmol of N-arylurea in 0.5 mL of DMF was
introduced via syringe. The resulting mixture was stirred at
room temperature for 30 min and then was irradiated by
5 (a) X. Peng, F. Li and C. Xia, Synlett, 2006, 1161; and
references cited therein; (b) T. Mizuno, M. Mihara, T. Iwai,
T. Ito and Y. Issino, Synthesis, 2006, 2825; and references
cited therein; (c) K. Orito, M. Miyazawa, T. Nakamura,
A. Horibata, H. Uscito, H. Nagasaki, M. Yuguchi,
S. Yamashita, T. Yamazaki and M. Tokuda, J. Org. Chem.,
2006, 71, 5951; (d) B. Zhu and R. J. Angelici, J. Am. Chem.
Soc., 2006, 128, 14460; (e) Y. Nishiyama, H. Kawamatsu and
N. Sonoda, J. Org. Chem., 2005, 70, 2551; (f) P.-A. Enquist,
P. Nilsson, J. Edin and M. Larhed, Tetrahedron Lett., 2005,
46, 3335; and references cited therein; (g) F. Bigi, R. Maggi
and G. Sartori, Green Chem., 2000, 2, 140.
ꢁ
microwave at 120 C for 1 h in the Smith synthesizer. The
reaction mixture was cooled to room temperature, ltered
through a pad of Celite and extracted with water and ethyl
acetate. The combined organic extracts were dried with anhy-
drous Na SO and the solvent was removed under reduced
2
4
pressure. The crude product was puried by silica gel column
chromatography to afford the N,N -diarylureas product. All
products are known in the literature and were characterized by
IR, NMR and melting points and their spectroscopic data
0
14
identical to that reported in the literature.
,3-Diphenylurea (Table 2, entries 1 and 2). H NMR
400 MHz, DMSO-d ) d
¼ 8.60 (s, 2H), 7.43 (d, J ¼ 8.5 Hz, 4H),
.25 (t, J ¼ 7.7 Hz, 4H), 6.95 (t, J ¼ 7.2 Hz, 2H).
6 (a) A. A. Nirschl, Y. Zou, S. R. Krystek Jr, J. C. Sutton,
L. M. Simpkins, J. A. Lupisella, J. E. Kuhns, R. Seethala,
R. Golla, P. G. Sleph, B. C. Beehler, G. J. Grover, D. Egan,
A. Fura, V. P. Vyas, Y.-X. Li, J. S. Sack, K. F. Kish, Y. An,
J. A. Bryson, J. Z. Gougoutas, J. DiMarco, R. Zahler,
J. Ostrowski and L. G. Hamann, J. Med. Chem., 2009, 52,
1
1
(
7
6
H
0
1
N-(4-Methoxyphenyl)-N -phenylurea (Table 2, entry 3).
H
NMR (300 MHz, DMSO-d ) d ¼ 8.52 (s, 1H), 8.41 (s, 1H), 7.40 (d,
6
H
J ¼ 8.5 Hz, 2H), 7.34 (d, J ¼ 9.0 Hz, 2H), 7.25 (t, J ¼ 7.7 Hz, 2H),
.92 (t, J ¼ 7.4 Hz, 1H), 6.83 (d, J ¼ 9.0 Hz, 2H), 3.70 (s, 3H).
2794;
(b)
V.
D.
Jadhav,
E.
Herdtweck
and
6
F. P. Schmidtchen, Chem.–Eur. J., 2008, 14, 6098; (c)
D. Schade, K. Topker-Lehmann, J. Kotthaus and
B. Clement, J. Org. Chem., 2008, 73, 1025; (d) G. Haufe,
U. Rolle, E. Kleinpeter, J. Kivikoski and K. Rissanen, J. Org.
Chem., 1993, 58, 7084; (e) S.-H. Jung and H. Kohn, J. Am.
Chem. Soc., 1985, 107, 2931; (f) B. B. Snider and
J. R. Duvall, Org. Lett., 2005, 7, 4519; (g) J. R. Duvall, F. Wu
and B. B. Snider, J. Org. Chem., 2006, 71, 8579; (h) S. Nag,
G. P. Yadav, P. R. Maulik and S. Batra, Synthesis, 2007, 911.
7 E. Wertheim, J. Am. Chem. Soc., 1931, 53, 200.
8 E. Artuso, I. Degani, R. Fochi and C. Magistris, Synthesis,
2007, 3497.
0
1
N-(4-Nitrophenyl)-N -phenylurea (Table 2, entry 4). H NMR
500 MHz, DMSO-d ) d
¼ 9.42 (s, 1H), 8.92 (s, 1H), 8.20 (d, J ¼
(
9
6
H
.0 Hz, 2H), 7.70 (d, J ¼ 9.0 Hz, 2H), 7.07 (d, J ¼ 7.3 Hz, 2H), 7.31
(t, J ¼ 7.7 Hz, 2H), 7.04 (t, J ¼ 7.5 Hz, 1H).
0
N-(2-Methylphenyl)-N -phenylurea (Table 2, entries 5 and 6).
1
H NMR (300 MHz, DMSO-d ) d ¼ 8.97 (s, 1H), 7.89 (s, 1H), 7.81
6
H
(
dd, J ¼ 1.0, 8.0 Hz, 1H), 7.43 (dt, J ¼ 1.4, 8.5 Hz, 3H), 7.28–7.23
m, 3H), 7.16–7.08 (m, J ¼ 7.5, 15.0 Hz, 3H), 6.97–6.88 (m, 2H),
(
2
.22 (s, 3H).
0
N-(4-Chlorophenyl)-N -phenylurea (Table 2, entries 7 and 8).
H NMR (300 MHz, DMSO-d ) d
¼ 8.81 (s, 1H), 8.70 (s, 1H), 7.50
1
6
H
(d, J ¼ 8.5 Hz, 2H), 7.45 (d, J ¼ 8.1 Hz, 2H), 7.32 (d, J ¼ 8.5 Hz,
9 S. H. Kim, B. R. Park and J. N. Kim, Bull. Korean Chem. Soc.,
2011, 32, 716.
2H), 7.29 (d, J ¼ 7.6 Hz, J ¼ 8.1 Hz, 2H), 6.98 (d, J ¼ 7.6 Hz, 1H).
1
0 (a) M. Nasrollahzadeh, M. Maham, A. Ehsani and M. Khalaj,
RSC Adv., 2014, 4, 19731; (b) M. Nasrollahzadeh, A. Rostami-
Vartouni, A. Ehsani and M. Moghadam, J. Mol. Catal. A:
Chem., 2014, 387, 123; (c) M. Nasrollahzadeh, A. Zahraei,
A. Ehsani and M. Khalaj, RSC Adv., 2014, 4, 20351; (d)
M. Nasrollahzadeh, M. Maham and M. M. Tohidi, J. Mol.
Catal. A: Chem., 2014, 391, 83; (e) M. Nasrollahzadeh,
A. Azarian, A. Ehsani and A. Zahraei, Tetrahedron Lett.,
2014, 55, 2813; (f) D. Habibi, S. Heydari and
M. Nasrollahzadeh, J. Chem. Res., 2012, 36, 573; (g)
P. Fakhri, B. Jaleh and M. Nasrollahzadeh, J. Mol. Catal. A:
Chem., 2014, 383–384, 17.
Acknowledgements
We gratefully acknowledge the Iranian Nano Council and
University of Qom for the support of this work.
References
1
(a) K. Matsuda, Med. Res. Rev., 1994, 14, 271; (b)
N. N. Melnikov, in Chemistry of Pesticides, ed. J. D.
Gunther, Springer-Verlag, Berlin, 1971, p. 225.
2
(a) A. Tsopmo, D. Ngnokam, D. Ngamga, J. F. Ayafor and
O. Sterner, J. Nat. Prod., 1999, 62, 1435; (b) Y. Funabashi, 11 M. Nasrollahzadeh, A. Ehsani and M. Maham, Synlett, 2014,
S. Tsubotani, K. Koyama, N. Katayama and S. Harada,
Tetrahedron, 1993, 49, 13.
(a) V. Papesch and E. F. Schroeder, J. Org. Chem., 1951, 16,
25, 505.
12 M. Carril, R. SanMartin and E. Dom ´ı nguez, Chem. Soc. Rev.,
2008, 37, 639.
3
4
1
1
879; (b) R. L. Clark and A. A. Pessolano, J. Am. Chem. Soc., 13 D. G. Crosby and C. Niemann, J. Am. Chem. Soc., 1954, 76,
958, 80, 1658; (c) L. Cassar, Chem. Ind., 1990, 72, 18. 4458.
(a) E. A. Jefferson and E. E. Swayze, Tetrahedron Lett., 1999, 14 (a) G. A. Artamkina, A. G. Sergeev and I. P. Beletskaya,
4
0, 7757; (b) K. Burgess, J. Ibarzo, S. D. Linthicum,
Tetrahedron Lett., 2001, 42, 4381; (b) A. G. Sergeev,
G. A. Artamkina and I. P. Beletskaya, Tetrahedron Lett.,
2003, 44, 4719; (c) M. C. Willis, R. H. Snell, A. J. Fletcher
D. H. Russell, H. Shin, A. Shitangkoon, R. Totani and
A. J. Zhang, J. Am. Chem. Soc., 1997, 119, 1556; (c)
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 26264–26270 | 26269